Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Basic properties  





3 Examples  





4 History  





5 Citations  





6 Works cited  





7 Further reading  














Harmonic Maass form







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, a weak Maass form is a smooth function on the upper half plane, transforming like a modular form under the action of the modular group, being an eigenfunction of the corresponding hyperbolic Laplace operator, and having at most linear exponential growth at the cusps. If the eigenvalueof under the Laplacian is zero, then is called a harmonic weak Maass form, or briefly a harmonic Maass form.

A weak Maass form which has actually moderate growth at the cusps is a classical Maass wave form.

The Fourier expansions of harmonic Maass forms often encode interesting combinatorial, arithmetic, or geometric generating functions. Regularized theta lifts of harmonic Maass forms can be used to construct Arakelov Green functions for special divisors on orthogonal Shimura varieties.

Definition

[edit]

Acomplex-valued smooth function on the upper half-plane H = {zC:  Im(z) > 0}  is called a weak Maass form of integral weight k (for the group SL(2, Z)) if it satisfies the following three conditions:

(1) For every matrix the function satisfies the modular transformation law
(2) is an eigenfunction of the weight k hyperbolic Laplacian
where
(3) has at most linear exponential growth at the cusp, that is, there exists a constant C > 0 such that f (z) = O(eCy)as

If is a weak Maass form with eigenvalue 0 under , that is, if , then is called a harmonic weak Maass form, or briefly a harmonic Maass form.

Basic properties

[edit]

Every harmonic Maass form of weight has a Fourier expansion of the form

where q = e2πiz, and are integers depending on Moreover,

denotes the incomplete gamma function (which has to be interpreted appropriately when n=0 ). The first summand is called the holomorphic part, and the second summand is called the non-holomorphic partof

There is a complex anti-linear differential operator defined by

Since , the image of a harmonic Maass form is weakly holomorphic. Hence, defines a map from the vector space of harmonic Maass forms of weight to the space of weakly holomorphic modular forms of weight It was proved by Bruinier and Funke[1] (for arbitrary weights, multiplier systems, and congruence subgroups) that this map is surjective. Consequently, there is an exact sequence

providing a link to the algebraic theory of modular forms. An important subspace of is the space of those harmonic Maass forms which are mapped to cusp forms under .

If harmonic Maass forms are interpreted as harmonic sections of the line bundle of modular forms of weight equipped with the Petersson metric over the modular curve, then this differential operator can be viewed as a composition of the Hodge star operator and the antiholomorphic differential. The notion of harmonic Maass forms naturally generalizes to arbitrary congruence subgroups and (scalar and vector valued) multiplier systems.

Examples

[edit]
of weight 2 is a harmonic Maass form of weight 2.

History

[edit]

The above abstract definition of harmonic Maass forms together with a systematic investigation of their basic properties was first given by Bruinier and Funke.[1] However, many examples, such as Eisenstein series and Poincaré series, had already been known earlier. Independently, Zwegers developed a theory of mock modular forms which also connects to harmonic Maass forms.[4]

An algebraic theory of integral weight harmonic Maass forms in the style of Katz was developed by Candelori.[9]

Citations

[edit]
  1. ^ a b Bruinier & Funke 2004, pp. 45–90.
  • ^ Zagier 1975, pp. 883–886.
  • ^ Kudla, Rapoport & Yang 1999, pp. 347–385.
  • ^ a b Zwegers 2002.
  • ^ Fay 1977, pp. 143–203.
  • ^ Hejhal 1983.
  • ^ Alfes et al. 2015.
  • ^ Duke, Imamoḡlu & Tóth 2011, pp. 947–981.
  • ^ Candelori 2014, pp. 489–517.
  • Works cited

    [edit]
    • Alfes, Claudia; Griffin, Michael; Ono, Ken; Rolen, Larry (2015). "Weierstrass mock modular forms and elliptic curves". Research in Number Theory. 1 (24). arXiv:1406.0443.
  • Bruinier, Jan Hendrik; Funke, Jens (2004). "On two geometric theta lifts". Duke Mathematical Journal. 125 (1): 45–90. arXiv:math/0212286. doi:10.1215/S0012-7094-04-12513-8. ISSN 0012-7094. MR 2097357. S2CID 2078210.
  • Candelori, Luca (2014). "Harmonic weak Maass forms: a geometric approach". Mathematische Annalen. 360 (1–2): 489–517. doi:10.1007/s00208-014-1043-5. S2CID 119474785.
  • Duke, William; Imamoḡlu, Özlem; Tóth, Árpad (2011). "Cycle integrals of the j-function and mock modular forms". Annals of Mathematics. Second Series. 173 (2): 947–981. doi:10.4007/annals.2011.173.2.8.
  • Fay, John (1977). "Fourier coefficients of the resolvent for a Fuchsian group". Journal für die reine und angewandte Mathematik. 294: 143–203.
  • Hejhal, Dennis (1983). The Selberg Trace Formula for PSL(2,R). Lecture Notes in Mathematics. Vol. 1001. Springer-Verlag.
  • Kudla, Steve; Rapoport, Michael; Yang, Tonghai (1999). "On the derivative of an Eisenstein series of weight one". International Mathematics Research Notices. 1999 (7): 347–385. doi:10.1155/S1073792899000185.
  • Zagier, Don (1975). "Nombres de classes et formes modulaires de poids 3/2". Comptes Rendus de l'Académie des Sciences, Série A (in French). 281: 883–886.
  • Zwegers, S.P. (2002). Mock Theta Functions (PhD thesis). University of Utrecht. ISBN 978-903933155-2.
  • Further reading

    [edit]
    • Ono, Ken (2009). "Unearthing the visions of a master: harmonic Maass forms and number theory". In Jerison, David; Mazur, Barry; Mrowka, Tomasz; Schmid, Wilfried; Stanley, Richard P.; Yau, Shing-Tung (eds.). Current developments in mathematics. Vol. 2008. International Press of Boston. pp. 347–454. ISBN 978-157146139-1.

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Harmonic_Maass_form&oldid=1188061942"

    Categories: 
    Automorphic forms
    Modular forms
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Use shortened footnotes from May 2021
    CS1 French-language sources (fr)
     



    This page was last edited on 3 December 2023, at 03:13 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki