Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Biography  





2 High Fidelity Demonstration  





3 Influence on High-Quality Modern PA Systems  





4 Personal life  





5 Awards and honors  





6 Patents  





7 References  





8 External links  














Harry F. Olson






العربية
Deutsch
Malagasy
Nederlands
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Harry Olson)

DrHarry Ferdinand Olson, E.E., Ph.D. (December 28, 1901 – April 1, 1982) was a prominent engineer and inventor with RCA Victor, the Acoustic Research Director of RCA Laboratories, Princeton, and a pioneer in the field of 20th century acoustical engineering[1] notably in the fields of high-fidelity, digital music synthesis, microphones, loudspeakers, acoustics, radar, submarine communication, magnetic tape and noise reduction.

Olson wrote ten books including Dynamical Analogies,[2]on electrical-mechanical-acoustical analogies, and had over one hundred patents.

Biography[edit]

Harry F. Olson was born in Mount Pleasant, Iowa, to Swedish immigrant parents. Technically inclined from an early age, he built and flew model airplanes, constructed a steam engine and invented a wood-fired boiler that drove a 100-volt DC generator. Olson designed and built an amateur radio transmitter, gaining enough proficiency to be granted an operator's license. Olson went on to earn a bachelor's degree in electrical engineering from the University of Iowa then continued to earn a master's degree with a thesis on acoustic wave filters in solids and a doctorateinphysics, working with polarization of resonance radiation in mercury.

Immediately after completing his course of study in 1928, Olson moved to New Jersey to work for RCA Laboratories. Olson would remain at RCA for almost four decades.

AnRCA 44-series ribbon microphone that was used by CBS. In 2005, Mix Foundation honored Harry F. Olson and Les Anderson of RCA with induction to the TECnology Hall of Fame for their development of the Model 44 microphone in 1931.[3]

Olson had a continuing interest in music, acoustics, and sound reproduction, and, by 1934, he was placed in charge of acoustical research at RCA. At RCA, Olson worked on a wide range of projects, which included developing microphones for the broadcasting and motion picture industries, improving loudspeakers, and making significant contributions to magnetic tape recording.

Like many engineers of the World War II generation, Olson also made significant contributions to military technology as well, particularly to the fields of underwater sound and anti-submarine warfare.

After the war Olson, along with Herbert Belar, developed the first modern electronic synthesizer. Equipped with electron tubes, the Mark II Sound Synthesizer was used to compose music, which was recorded and sold to the public.

A prolific inventor and engineer, Olson was awarded more than 100 patents for the various types of microphones (including the widely used 44- and 77-series), cardioid (directional) microphones, loudspeaker baffles, air-suspension loudspeakers, isobaric loudspeakers, early video recording equipment, audio recording equipment, phonograph pickups, underwater sound equipment, noise reduction, sound technology in motion-pictures, and public-address systems he developed. He also authored 135 articles and ten books including an interdisciplinary text charting the dynamical analogies between electrical, acoustical and mechanical systems.

In 1949, Olson was honored by being the first recipient of the Audio Engineering Society's John H. Potts Memorial Award, an award program which was later renamed the gold medal. In 1953-4 Olson served as president of the Acoustical Society of America, which awarded him the very first Silver Medal in Engineering Acoustics in 1974 and the Gold Medal in 1981.[4] He won the IEEE Lamme Medal in 1970,[5] was elected to the National Academy of Sciences in 1959, and was the recipient of many honorary degrees during his lifetime.

Olson retired from RCA in 1967, continuing as a consultant for RCA Laboratories.

High Fidelity Demonstration[edit]

Shortly after World War II, Dr. Olson conducted an experiment, now considered a classic, to determine the preferred bandwidth for the reproduction of music. Previous experimenters had found that listeners seemed to prefer a high-frequency cutoff of 5000 Hz for reproduced music. Dr. Olson suspected that this was likely due to imperfections in the sound, especially in the higher frequencies, as reproduced by equipment in common use at the time. These imperfections included clicks and pops (from 78 rpm recordings), added noise (from AM radio broadcast static), hiss and harmonic distortion (from amplifier circuits), and non linear frequency response from primitive loudspeaker designs. If the sound was free of these problems, he reasoned, listeners would prefer full frequency reproduction.

In his experiment, he set up a room which was divided diagonally by a visually opaque but acoustically transparent screen. The screen incorporated a concealed low-pass acoustical filter having an upper frequency cutoff of 5000 Hz. This filter could be opened or closed, allowing either the full range of frequencies to pass or the range only below 5000 Hz. At first, a small orchestra sat and performed on one side of the screen, while a group of test subjects sat on the other and listened. The listeners were asked to select their preference between two conditions: full bandwidth or restricted bandwidth. There was overwhelming preference in favor of the full bandwidth. Next, the orchestra was replaced with a sound-reproduction system with loudspeakers positioned behind the screen instead. When the sound system was free of distortion, the listeners preferred the full bandwidth. But when he introduced small amounts of nonlinear distortion, the subjects preferred a restricted bandwidth, thus demonstrating clearly the importance of high quality in audio systems.[1]

As a result of this experiment and the work of others, such as Avery Fisher and later Edgar Villchur, high fidelity sound recording, transmission, and reproduction equipment saw increased investment, development, and public acceptance in the following decades. The design and manufacture of everything from microphones, to tape recorders, vinyl records, amplifiers, and loudspeakers were impacted.

Influence on High-Quality Modern PA Systems[edit]

The Grateful Dead's early sound engineering team, led by Owsley Stanley and Dan Healy, considered Harry Olson's 1957 book "Acoustical Engineering" the Dead's "bible" on building the Wall of Sound (Grateful Dead), the first touring sound system that allowed a band to actually hear themselves and have the audience hear what the band was hearing on stage.[6] The band made copies of the book for all of the Dead's sound crew.

The Wall of Sound influenced all modern high-quality PA systems for live music.

Personal life[edit]

Iconic microphone image based on the design of the RCA Type 77-A microphone

Harry F. Olson was born in Mt. Pleasant, Iowa, on December 18, 1901. He was the first of two children. His parents were Swedish immigrants.[1]

Olson married Lorene Johnson of Morris, Illinois in 1935. Both his mother and his wife were talented amateur artists — Lorene's paintings were displayed in Olson's RCA office for many years. Olson died at Princeton Medical Center in Princeton, New Jersey on April 1, 1982, at the age of 80.

Awards and honors[edit]

Year Honor or Award[1]
1940 The Modern Pioneer Award of the National Association of Manufacturers
1952 The John H. Potts Medal of the Audio Engineering Society
1955 The Samuel L. Warner Medal of the Society of Motion Picture and Television Engineers
1956 The John Scott Medal of the City of Philadelphia
1956 The Achievement Award of the IRE Professional Group on Audio
1963 The John Ericsson Medal of the American Society of Swedish Engineers
1965 The Emile Berliner Award of the Audio Engineering Society
1967 The Institute of Electrical and Electronics Engineers' Mervin J. Kelly Medal
1969 The Institute of Electrical and Electronics Engineers' Consumer Electronics Award
1970 The Institute of Electrical and Electronics Engineers' Lamme Medal
1974 The Acoustical Society of America's first silver medal in engineering acoustics
1981 The Acoustical Society of America's Gold Medal

Patents[edit]

Year Patent Description Patent
Number
1931 Acoustic Device For Sound Pick-up
(Ellipsoid Microphone)
1,814,357 [7]
1932 Apparatus for Converting Sound Vibrations Into Electrical Variations
(First Practical Ribbon Microphone)
1,885,001 [8]
1932 System Responsive to The Energy Flow of Sound Waves
(Pressure and Velocity Sound Level Meter)
1,892,644 [9]
1932 Sound Pick-Up Device
(Unidirectional Cardioid Microphone)
1,892,645 [10]
1933 System For the Conversion and Transfer Of Energy
(Condenser Microphone Step-Up Transformer With A Remote Preamplifier.)
1,897,732 [11]
1934 Acoustic Device
(Loudspeaker Horn)
1,984,542 [12]
1935 Loud Speaker and Method of Propagating Sound
(Passive Radiator Loud Speaker)
1,988,250 [13]
1935 Acoustic Device
(Double Voice Coil Loudspeaker)
2,007,748 [14]
1936 Electroacoustical Device
(Ribbon Telephone Microphone/Speaker)
2,064,316 [15]
1937 Sound Reproducing Apparatus
(Multi-Cellular Horn)
2,102,212 [16]
1937 Acoustical Device
(Small Portable Closed Back Ribbon Microphone)
2,102,736 [17]
1938 Microphone 2,113,219 [18]
1938 Microphone And Circuit
(Microphone Mixer By Verifying Field Coil Strength)
2,119,345 [19]
1940 Loud-Speaker
(Multiple Flare Horn)
2,203,875 [20]
1940 Loud-Speaker
(Hybrid Bass-Horn/Bass-Reflex Design)
2,224,919 [21]
1941 Electroacoustical Apparatus
(Line Microphone "Shotgun Microphone")
2,228,886 [22]
1941 Acoustical Apparatus
(Woofer Surround)
2,234,007 [23]
1942 Signal Translating Apparatus
(Multiple Co-Axial Loudspeaker Designs)
2,269,284 [24]
1942 Electroacoustical Apparatus
(Design of the RCA 77 Ribbon Microphone)
2,271,988 [25]
1942 Radio Remote Control System
(Using Different Frequencies of Sound)
2,293,166 [26]
1942 Electroacoustical Apparatus
(Line Array Microphone)
2,299,342 [27]
1945 Signal Translating Apparatus
(Sub-Aqueous Submarine Microphone)
2,390,847 [28]
1947 Magnetostrictive Signal Translating Apparatus
(Rugged Sub-Aqueous Submarine Microphone)
2,414,699 [29]
1947 Signal Translating Apparatus
(Sub-Aqueous Submarine Pressure Compensated Speaker)
2,429,104 [30]
1949 Signal Transmission and Receiving Apparatus
(Ultrasonically Power Wireless Earphone)
2,461,344 [31]
1949 Air Suspension Loudspeaker 2,490,466 [32]
1950 Synthetic Reverberation System 2,493,638 [33]
1950 Diffraction Type Sound Absorber
(Suspended)
2,502,016 [34]
1950 Diffraction Type Sound Absorber Covered By A Membrane 2,502,018 [35]
1950 Diffraction Type Sound Absorber With Complementary Fitting Portions 2,502,019 [36]
1950 Diffraction Type Sound Absorber With Fiberglass Walls
(Cylinder)
2,502,019 [36]
1950 Single Element, Unidirectional, Dynamic Microphone
(With Pattern Control)
2,512,467 [37]
1950 Feedback Controller System For Recording Cutters And the Like


(Phonograph Recording Lathe)

2,516,338 [38]
1951 Directional Microphone
(Coincident Pair Of Ribbon Microphones With Horizontal Pattern Control)
2,539,671 [39]
1951 Coaxial Dual-Unit Electrodynamic Loud-Speaker
(Improved Version)
2,539,672 [40]
1951 Transformerless Audio Output System
(Tube Amplifier)
2,548,235 [41]
1951 Means For Improving The Sensitivity And The Response Characteristics
Of Velocity Microphones
2.566,039

[42]

1951 Line Type Pressure Responsive Microphone 2566,094

[43]

1951 Velocity Type Microphone
(Acoustic High Frequency Equalizer
2,572,376 [44]
1953 Suspension System For Dynamic Microphones 2,628,289 [45]
1953 Distortion Analyzing Apparatus
(Improvement)
2,629,000 [46]
1953 Second Order Gradient Directional Microphone 2,640,110 [47]
1953 Portable Radio With A Bass-Reflex Cabinet 2,642,948 [48]
1953 Noise Discrimination System 2,645,648 [49]
1953 Cabinet For Sound Translating Apparatus 2,649,164 [50]
1953 Multisection Acoustic Filter
(Filtering Out Frequencies above 5,000 Hz)
2,656,004 [51]
1954 Uniaxial Microphone 2,680,787 [52]
1954 Noise Reduction System 2,686,296 [53]
1954 Sound Translating Apparatus
(Second Speaker Inside The Cabinet)
2,688,373 [54]
1954 Coaxial, Dual Unit, Electrodynamic Loud-Speaker
(Improved Magnetic Structure)
2,699,472 [55]
1955 Velocity Microphone
(Improved Magnetic Structure)
2,699,474 [56]
1955 Dynamic Microphone
(Compact Design)
2,718,272 [57]
1956 Unidirectional Microphone
(Low Cost Ribbon Design)
2,751,441 [58]
1956 Acoustical Resistance For Pressure Type Microphones 2,773,130 [59]
1957 Methods Of Restoring Phonograph Records
(Re-synthesizing The Recording)
2,808,466 [60]
1957 Transducer With Fluid Filled Diaphragm Suspension 2,814,353 [61]
1957 Loudspeaker Structure
(Sculpted Cone For High Frequency Pattern Control)
2,825,823 [62]
1958 Combination Chassis And Loudspeaker 2,838,607 [63]
1958 Directional Microphone
(Using Two Microphones To Increase Directivity)
2,854,511 [64]
1958 Noise Discriminator, Threshold Type 2,645,684 [65]
1958 Music Synthesizer
(Electronic)
2,855,816 [66]
1958 Wide Range Dynamic Phonograph Pickup 2,858,375 [67]
1959 Acoustic Apparatus
(Improved Acoustic Labyrinth)
2,870,856 [68]
1959 Signal Frequency Change Detector 2,918,667 [69]
1960 Vibration Control Apparatus 2,964,272 [70]
1961 Apparatus For Speech Analysis and Printer Control Mechanisms 2,971,057 [71]
1961 Electronic Sound Absorber 2,983,790 [72]
1961 Directional Electrostatic Microphone 3,007,012 [73]
1961 Music Composing Machine 3,007,362 [74]
1963 Stereophonic Loudspeaker 3,104,729 [75]
1968 Voiced Sound Fundamental Frequency Detector 3,400,215 [76]

References[edit]

  • ^ Olson, Harry F. (1943). Dynamical Analogies (PDF). New York: D. Van Nostrand Company, Ltd. Retrieved 18 June 2023.
  • ^ "Mix Foundation. TEC Awards. TECnology Hall of Fame, 2005. Innovations That Changed the Pro Audio World". Archived from the original on 2008-10-17. Retrieved 2008-09-29.
  • ^ Lindsay, R. Bruce (1982-08-01). "Olson, Harry F. ⋅ 1901–1982". The Journal of the Acoustical Society of America. 72 (2): 645. Bibcode:1982ASAJ...72..645L. doi:10.1121/1.388152. ISSN 0001-4966.
  • ^ "IEEE Lamme Medal Recipients". IEEE. Retrieved December 12, 2010.[permanent dead link]
  • ^ Anderson, Brian (5 July 205). "The Wall of Sound: The untold story of the Grateful Dead's short-lived mega PA, arguably the largest, most technologically innovative sound system ever built". vice.com. Vice Media Group. Retrieved 21 January 2022.
  • ^ US Patent 1814357
  • ^ US Patent 1885001
  • ^ US Patent 1892644
  • ^ US Patent 1892645
  • ^ US Patent 1897732
  • ^ US Patent 1984542
  • ^ US Patent 1988250
  • ^ US Patent 2007748
  • ^ US Patent 2064316
  • ^ US Patent 2102212
  • ^ US Patent 2102736
  • ^ US Patent 2113219
  • ^ US Patent 2119345
  • ^ US Patent 2203875
  • ^ US Patent 2224919
  • ^ US Patent 2228886
  • ^ US Patent 2234007
  • ^ US Patent 2269284
  • ^ US Patent 2271988
  • ^ US Patent 2293166
  • ^ US Patent 2299342
  • ^ US Patent 2390847
  • ^ US Patent 2414699
  • ^ US Patent 2429104
  • ^ US Patent 2461344
  • ^ US Patent 2490466
  • ^ US Patent 2493638
  • ^ US Patent 2502016
  • ^ US Patent 2502018
  • ^ a b US Patent 2502019
  • ^ US Patent 2512467
  • ^ US Patent 2516338
  • ^ US Patent 2539671
  • ^ US Patent 2539672
  • ^ US Patent 2548235
  • ^ US Patent 2.566039[dead link]
  • ^ US Patent 2566094
  • ^ US Patent 2572376
  • ^ US Patent 2628289
  • ^ US Patent 2629000
  • ^ US Patent 2640110
  • ^ US Patent 2642948
  • ^ US Patent 2645648
  • ^ US Patent 2649164
  • ^ US Patent 2656004
  • ^ US Patent 2680787
  • ^ US Patent 2686296
  • ^ US Patent 2688373
  • ^ US Patent 2699472
  • ^ US Patent 2699474
  • ^ US Patent 2718272
  • ^ US Patent 2751441
  • ^ US Patent 2773130
  • ^ US Patent 2808466
  • ^ US Patent 2814353
  • ^ US Patent 2825823
  • ^ US Patent 2838607
  • ^ US Patent 2854511
  • ^ US Patent 2645684
  • ^ US Patent 2855816
  • ^ US Patent 2858375
  • ^ US Patent 2870856
  • ^ US Patent 2918667
  • ^ US Patent 2964272
  • ^ US Patent 2971057
  • ^ US Patent 2983790
  • ^ US Patent 3007012
  • ^ US Patent 3007362
  • ^ US Patent 3104729
  • ^ US Patent 3400215
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Harry_F._Olson&oldid=1227943439"

    Categories: 
    American acoustical engineers
    1901 births
    1982 deaths
    American people of Swedish descent
    Members of the United States National Academy of Sciences
    ASA Gold Medal recipients
    IEEE Lamme Medal recipients
    20th-century American inventors
    Engineers from Iowa
    Fellows of the American Physical Society
    Hidden categories: 
    All articles with dead external links
    Articles with dead external links from October 2017
    Articles with permanently dead external links
    Articles with dead external links from June 2024
    Articles with short description
    Short description is different from Wikidata
    Articles with FAST identifiers
    Articles with ISNI identifiers
    Articles with VIAF identifiers
    Articles with WorldCat Entities identifiers
    Articles with BIBSYS identifiers
    Articles with BNF identifiers
    Articles with BNFdata identifiers
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NDL identifiers
    Articles with NKC identifiers
    Articles with NTA identifiers
    Articles with CINII identifiers
    Articles with Trove identifiers
    Articles with SNAC-ID identifiers
    Articles with SUDOC identifiers
     



    This page was last edited on 8 June 2024, at 16:45 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki