Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Other hinges  





3 References  





4 Bibliography  





5 External links  














Hinged dissection






Română
Русский
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Loop animation of hinged dissections from triangletosquare, then to hexagon, then back again to triangle. Notice that the chain of pieces can be entirely connected in a ring during the rearrangement from square to hexagon.

Ingeometry, a hinged dissection, also known as a swing-hinged dissectionorDudeney dissection,[1] is a kind of geometric dissection in which all of the pieces are connected into a chain by "hinged" points, such that the rearrangement from one figure to another can be carried out by swinging the chain continuously, without severing any of the connections.[2] Typically, it is assumed that the pieces are allowed to overlap in the folding and unfolding process;[3] this is sometimes called the "wobbly-hinged" model of hinged dissection.[4]

History[edit]

Dudeney's hinged dissection of a triangle into a square.
Animation of hinged dissection from hexagram to triangle to square
Animation of hinged dissection from hexagram to triangle to square

The concept of hinged dissections was popularised by the author of mathematical puzzles, Henry Dudeney. He introduced the famous hinged dissection of a square into a triangle (pictured) in his 1907 book The Canterbury Puzzles.[5] The Wallace–Bolyai–Gerwien theorem, first proven in 1807, states that any two equal-area polygons must have a common dissection. However, the question of whether two such polygons must also share a hinged dissection remained open until 2007, when Erik Demaine et al. proved that there must always exist such a hinged dissection, and provided a constructive algorithm to produce them.[4][6][7] This proof holds even under the assumption that the pieces may not overlap while swinging, and can be generalised to any pair of three-dimensional figures which have a common dissection (see Hilbert's third problem).[6][8] In three dimensions, however, the pieces are not guaranteed to swing without overlap.[9]

Other hinges[edit]

Hinged square to pentagon
Hinged square to pentagon

Other types of "hinges" have been considered in the context of dissections. A twist-hinge dissection is one which use a three-dimensional "hinge" which is placed on the edges of pieces rather than their vertices, allowing them to be "flipped" three-dimensionally.[10][11] As of 2002, the question of whether any two polygons must have a common twist-hinged dissection remains unsolved.[12]

References[edit]

  1. ^ Akiyama, Jin; Nakamura, Gisaku (2000). "Dudeney Dissection of Polygons". Discrete and Computational Geometry. Lecture Notes in Computer Science. Vol. 1763. pp. 14–29. doi:10.1007/978-3-540-46515-7_2. ISBN 978-3-540-67181-7.
  • ^ Pitici, Mircea (September 2008). "Hinged Dissections". Math Explorers Club. Cornell University. Retrieved 19 December 2013.
  • ^ O'Rourke, Joseph (2003). "Computational Geometry Column 44". arXiv:cs/0304025v1.
  • ^ a b "Problem 47: Hinged Dissections". The Open Problems Project. Smith College. 8 December 2012. Retrieved 19 December 2013.
  • ^ Frederickson 2002, p.1
  • ^ a b Abbot, Timothy G.; Abel, Zachary; Charlton, David; Demaine, Erik D.; Demaine, Martin L.; Kominers, Scott D. (2008). "Hinged Dissections Exist". Proceedings of the twenty-fourth annual symposium on Computational geometry - SCG '08. p. 110. arXiv:0712.2094. doi:10.1145/1377676.1377695. ISBN 9781605580715. S2CID 3264789.
  • ^ Bellos, Alex (30 May 2008). "The science of fun". The Guardian. Retrieved 20 December 2013.
  • ^ Phillips, Tony (November 2008). "Tony Phillips' Take on Math in the Media". Math in the Media. Retrieved 20 December 2013.
  • ^ O'Rourke, Joseph (March 2008). "Computational Geometry Column 50" (PDF). ACM SIGACT News. 39 (1). Retrieved 20 December 2013.
  • ^ Frederickson 2002, p.6
  • ^ Frederickson, Greg N. (2007). Symmetry and Structure in Twist-Hinged Dissections of Polygonal Rings and Polygonal Anti-Rings (PDF). Bridges 2007. The Bridges Organization. Retrieved 20 December 2013.
  • ^ Frederickson 2002, p. 7
  • Bibliography[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Hinged_dissection&oldid=1224833122"

    Categories: 
    Geometric dissection
    Recreational mathematics
    Discrete geometry
    Euclidean plane geometry
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    EngvarB from December 2013
    Use dmy dates from May 2024
     



    This page was last edited on 20 May 2024, at 18:57 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki