Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Causes  



1.1  Cyanide  



1.1.1  Treatments  







1.2  Ischemia  







2 See also  





3 References  














Histotoxic hypoxia






العربية
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 


















From Wikipedia, the free encyclopedia
 


Histotoxic hypoxia (also called histoxic hypoxia) is the inability of cells to take up or use oxygen from the bloodstream, despite physiologically normal delivery of oxygen to such cells and tissues.[1] Histotoxic hypoxia results from tissue poisoning, such as that caused by cyanide (which acts by inhibiting cytochrome oxidase) and certain other poisons like hydrogen sulfide (byproduct of sewage and used in leather tanning).

Causes[edit]

Histotoxic hypoxia refers to a reduction in ATP production by the mitochondria due to a defect in the cellular usage of oxygen.[2]

Cyanide[edit]

An example of histotoxic hypoxia is cyanide poisoning. There is a profound drop in tissue oxygen consumption since the reaction of oxygen with cytochrome oxidase is blocked by the presence of cyanide. Cyanide binds to the ferric ion on cytochrome oxidase a3 and prevents the fourth and final reaction in the electron transport chain. This completely stops oxidative phosphorylation and prevents the mitochondria from producing ATP.[3] There are other chemicals that interrupt the mitochondrial electron transport chain (e.g., rotenone, antimycin A) and produce effects on tissue oxygenation similar to that of cyanide. Oxygen extraction decreases in parallel with the lower oxygen consumption, with a resulting increase in venous oxygen content and PvO2. Although cyanide stimulates the peripheral respiratory chemoreceptors, increasing the inspired oxygen fraction is not helpful, since there is already an adequate amount of oxygen which the poisoned cells cannot use.[2]

Treatments[edit]

Cyanide antidote kit is a widely used method in treating cyanide induced histotoxic hypoxia. It consists of three different parts that are administered one after the other. The three parts are amyl nitrite, sodium nitrite, and sodium thiosulfate.[3] The nitrites act with hemoglobin to form methemoglobin which binds cyanide. Cyanide has a preference to the ferric ion on methemoglobin over the ferric ion on cytochrome oxidase a3 and causes cyanide to be drawn out of the mitochondria. This causes the mitochondria to produce ATP again and stop histotoxic hypoxia.[3]

Ischemia[edit]

Histotoxic hypoxia can be a consequence of ischemia in the case of stroke or inflammation. In the case of inflammation, neuro-inflammatory diseases like Alzheimer's disease, Parkinson's disease and Multiple Sclerosis can all lead to histotoxic hypoxia. During a stroke, there is an interruption in the blood supply followed by reperfusion which leads to histotoxic hypoxia because of an accumulation of reactive oxygen species (ROS).[4] In the case of inflammatory diseases, histotoxic hypoxia can also be triggered by ROS from mitochondrial damage in the active lesions of chronic multiple sclerosis. Inflammatory mediators such as heme oxygynase-1(HO-1) can result in histotoxic hypoxia when they are released in excess and cause the sequestration of iron as in the cases of Alzheimer's disease, Parkinson's disease and Multiple Sclerosis.[4]

See also[edit]

References[edit]

  1. ^ "Forms of hypoxia". courses.kcumb.edu. Archived from the original on 2007-12-22.
  • ^ a b Pittman RN. "Chapter 7: Oxygen Transport in Normal and Pathological Situations: Defects and Compensations". Regulation of Tissue Oxygenation. Retrieved 6 May 2012.
  • ^ a b c Hamel, Jillian (2011-02-01). "A Review of Acute Cyanide Poisoning With a Treatment Update". Critical Care Nurse. 31 (1): 72–82. doi:10.4037/ccn2011799. ISSN 0279-5442. PMID 21285466.
  • ^ a b Goel, Rajesh; Bagga, Parveen (December 2010). "Cobalt chloride induced histotoxic cerebral hypoxia: A new experimental model to study neuroprotective effect". Journal of Pharmaceutical Education & Research. 1: 88–95.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Histotoxic_hypoxia&oldid=1124122570"

    Categories: 
    Poisoning by drugs, medicaments and biological substances
    Respiration
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 27 November 2022, at 12:51 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki