Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Mechanisms  



1.1  Receptor uncoupling  





1.2  Endocytosis  







2 References  














Homologous desensitization






Српски / srpski
Srpskohrvatski / српскохрватски
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


General pathways for GPCR homologous desensitization

Homologous desensitization occurs when a receptor decreases its response to an agonist at high concentration.[1] It is a process through which, after prolonged agonist exposure, the receptor is uncoupled from its signaling cascade and thus the cellular effect of receptor activation is attenuated.[2]

Homologous desensitization is distinguished from heterologous desensitization, a process in which repeated stimulation of a receptor by an agonist results in desensitization of the stimulated receptor as well as other, usually inactive, receptors on the same cell. They are sometimes denoted as agonist-dependent and agonist-independent desensitization respectively. While heterologous desensitization occurs rapidly at low agonist concentrations, homologous desensitization shows a dose dependent response and usually begins at significantly higher concentrations.[3][4]

Homologous desensitization serves as a mechanism for tachyphylaxis and helps organisms to maintain homeostasis. The process of homologous desensitization has been extensively studied utilizing G protein–coupled receptors (GPCRs).[3][5] While the different mechanisms for desensitization are still being characterized, there are currently four known mechanisms: uncoupling of receptors from associated G proteins, endocytosis, degradation, and downregulation. The degradation and downregulation of receptors is often also associated with drug tolerance since it has a longer onset, from hours to days.[6] It has been shown that these mechanisms can happen independently of one another, but that they also influence one another. In addition, the same receptor expressed in different cell types can be desensitized by different mechanisms.[5]

Mechanisms[edit]

For GPCRs generally, each mechanism of homologous desensitization begins with receptor phosphorylation by an associated G protein-coupled receptor kinase (GRK). GRKs selectively modify activated receptors such that no heterogeneous desensitization will occur. This phosphorylation then acts to recruit other proteins, such as arrestins, that participate in one or more of the following mechanisms.

Receptor uncoupling[edit]

Receptor uncoupling/phosphorylation is the most rapid form of desensitization that happens within a cell, as its effects are seen within seconds to minutes of agonist application.[5] The ß2 adrenergic receptor was the first to have its desensitization studied and characterized. The mechanism of desensitization involves the action of a specific GRK, denoted ßARK, and also ß-arrestins. The ß-arrestins show high affinity for receptors that are both phosphorylated and activated, but are still able to bind non-phosphorylated receptors with a lower affinity. Additionally, ß-arrestins are better at inactivating ßARK-phosphorylated receptors rather than protein kinase A-phosphorylated receptors, which suggests that the arrestins preferentially mediate homologous desensitization.[6]

The mechanism of homologous desensitization for the β2 receptor is as follows:

  1. Agonist binds and activates the receptor, which changes to an active conformational state.
  2. Beta adrenergic receptor kinase (βARK), a cytoplasmic kinase is activated and phosphorylates the C-terminus of the β2 receptor.
  3. This phosphorylation increases the affinity of β-arrestin for the receptor, resulting in uncoupling of the α subunit of the heterotrimeric G-protein from the receptor, producing desensitization.[citation needed]

Endocytosis[edit]

In contrast to receptor uncoupling, endocytosis can occur through multiple pathways. GPCR endocytosis has been shown to be either dependent or independent of arrestin activity, depending on the cell type used in the experiment; however, the former is more common. Furthermore, the same receptor expressed in two distinct cell types can be endocytosed through different mechanisms due to differences in GRK and arrestin expression: either through clathrin-coated vesiclesorcaveolae.[4] In general, receptor sequestration preferentially affects receptors that are both activated and phosphorylated, but the phosphorylation is not always a necessary component of endocytosis. After being sequestered, the affected receptors can either be degraded by lysosomes or reinserted into the plasma membrane, which is called receptor recycling.[5]

Post-translational modification also affects receptor endocytosis. For example, different glycosylations on the exterior N-terminusofdopamine receptors D2 and D3 were associated with specific endocytotic pathways. Additionally, palmitoylation, which primarily mediates receptor localization within the membrane, can also affect endocytosis. It is required for the endocytosis of thyrotropin-releasing hormone and D3 receptors, and it is inhibitory for leutinizing hormone and vasopressin receptor 1A receptors. It has been shown to have no effect on adrenergic receptors (specifically ß2 and α1).[3]

References[edit]

  1. ^ "homologous desensitization". Medical Dictionary. Drugs.com. Retrieved 18 May 2011.
  • ^ Fehmann, HC; Habener, JF (Jun 1991). "Homologous desensitization of the insulinotropic glucagon-like peptide-I (7-37) receptor on insulinoma (HIT-T15) cells". Endocrinology. 128 (6): 2880–8. doi:10.1210/endo-128-6-2880. PMID 1645253.
  • ^ a b c Zhang, Xiaohan; Kim, Kyeong-Man (2017). "Multifactorial Regulation of G Protein-Coupled Receptor Endocytosis". Biomolecules & Therapeutics. 25 (1): 26–43. doi:10.4062/biomolther.2016.186. PMC 5207461. PMID 28035080.
  • ^ a b Gergs, Ulrich; Fritsche, Julia; Fabian, Stephanie; Christ, Josepha; Neumann, Joachim (2017). "Desensitization of the human 5-HT4 receptor in isolated atria of transgenic mice". Naunyn-Schmiedeberg's Archives of Pharmacology. 390 (10): 987–996. doi:10.1007/s00210-017-1403-2. PMID 28689254.
  • ^ a b c d Ferguson, Stephen S. G. (2001-03-01). "Evolving Concepts in G Protein-Coupled Receptor Endocytosis: The Role in Receptor Desensitization and Signaling". Pharmacological Reviews. 53 (1): 1–24. ISSN 0031-6997. PMID 11171937.
  • ^ a b Böhm, Stephan K.; Grady, Eileen F.; Bunnett, Nigel W. (1997-02-15). "Regulatory mechanisms that modulate signalling by G-protein-coupled receptors". Biochemical Journal. 322 (1): 1–18. doi:10.1042/bj3220001. ISSN 0264-6021. PMC 1218151. PMID 9078236.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Homologous_desensitization&oldid=1086003506"

    Categories: 
    Membrane biology
    G protein-coupled receptors
    Signal transduction
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from October 2017
     



    This page was last edited on 3 May 2022, at 16:36 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki