Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Statement for harmonic functions  





2 Proof for harmonic functions  





3 General discussion  





4 See also  





5 References  





6 External links  














Hopf lemma






Italiano
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, the Hopf lemma, named after Eberhard Hopf, states that if a continuous real-valued function in a domain in Euclidean space with sufficiently smooth boundary is harmonic in the interior and the value of the function at a point on the boundary is greater than the values at nearby points inside the domain, then the derivative of the function in the direction of the outward pointing normal is strictly positive. The lemma is an important tool in the proof of the maximum principle and in the theory of partial differential equations. The Hopf lemma has been generalized to describe the behavior of the solution to an elliptic problem as it approaches a point on the boundary where its maximum is attained.

In the special case of the Laplacian, the Hopf lemma had been discovered by Stanisław Zaremba in 1910.[1] In the more general setting for elliptic equations, it was found independently by Hopf and Olga Oleinik in 1952, although Oleinik's work is not as widely known as Hopf's in Western countries.[2][3] There are also extensions which allow domains with corners.[4]

Statement for harmonic functions

[edit]

Let Ω be a bounded domain in Rn with smooth boundary. Let f be a real-valued function continuous on the closure of Ω and harmonic on Ω. If x is a boundary point such that f(x) > f(y) for all y in Ω sufficiently close to x, then the (one-sided) directional derivativeoff in the direction of the outward pointing normal to the boundary at x is strictly positive.

Proof for harmonic functions

[edit]

Subtracting a constant, it can be assumed that f(x) = 0 and f is strictly negative at interior points near x. Since the boundary of Ω is smooth there is a small ball contained in Ω the closure of which is tangent to the boundary at x and intersects the boundary only at x. It is then sufficient to check the result with Ω replaced by this ball. Scaling and translating, it is enough to check the result for the unit ball in Rn, assuming f(x) is zero for some unit vector x and f(y) < 0 if |y| < 1.

ByHarnack's inequality applied to −f

for r < 1. Hence

Hence the directional derivative at x is bounded below by the strictly positive constant on the right hand side.

General discussion

[edit]

Consider a second order, uniformly elliptic operator of the form

In particular, the smallest eigenvalue of the real symmetric matrix is bounded from below by a positive constant that is independent of . Here is an open, bounded subset of and one assumes that .

The Weak Maximum Principle states that a solution of the equation in attains its maximum value on the closure at some point on the boundary . Let be such a point, then necessarily

where denotes the outer normal derivative. This is simply a consequence of the fact that must be nondecreasing as approach . The Hopf Lemma strengthens this observation by proving that, under mild assumptions on and , we have

A precise statement of the Lemma is as follows. Suppose that is a bounded region in and let be the operator described above. Let be of class and satisfy the differential inequality

Let be given so that . If (i) isat, and (ii) , then either is a constant, or , where is the outward pointing unit normal, as above.

The above result can be generalized in several respects. The regularity assumption on can be replaced with an interior ball condition: the lemma holds provided that there exists an open ball with . It is also possible to consider functions that take positive values, provided that . For the proof and other discussion, see the references below.

See also

[edit]

References

[edit]
  1. ^ M.S. Zaremba, Sur un problème mixte relatif à l’équation de Laplace, Bull. Intern. de l’Acad. Sci. de Cracovie, Ser. A, Sci. Math. (1910), 313–344.
  • ^ Hopf, Eberhard. A remark on linear elliptic differential equations of second order. Proc. Amer. Math. Soc. 3 (1952), 791–793.
  • ^ Oleĭnik, O. A. On properties of solutions of certain boundary problems for equations of elliptic type. Mat. Sbornik N.S. 30 (1952), no. 72, 695–702.
  • ^ Gidas, B.; Ni, Wei Ming; Nirenberg, L. Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), no. 3, 209–243.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Hopf_lemma&oldid=1221741153"

    Categories: 
    Partial differential equations
    Mathematical principles
    Hidden category: 
    Pages that use a deprecated format of the math tags
     



    This page was last edited on 1 May 2024, at 18:32 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki