Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Description  





2 Humification  





3 Stability  





4 Horizons  





5 Benefits of soil organic matter and humus  





6 See also  





7 References  





8 External links  














Humus






العربية

Azərbaycanca
Беларуская
Беларуская (тарашкевіца)
Български
Català
Čeština
Dansk
Deutsch
Eesti
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français
Frysk
Gaeilge
Galego

Հայերեն
ि
Hrvatski
Ido
Bahasa Indonesia
Interlingua
Italiano
עברית
Jawa

Қазақша
Kiswahili
Kreyòl ayisyen
Кыргызча
Latina
Latviešu
Lietuvių
Magyar

Bahasa Melayu
Монгол
Nederlands

Norsk bokmål
Norsk nynorsk
Occitan
Oʻzbekcha / ўзбекча
Polski
Português
Română
Русский
Simple English
Slovenčina
Slovenščina
Српски / srpski
Suomi
Svenska
Татарча / tatarça

Тоҷикӣ
Türkçe
Українська
Tiếng Vit



Betawi
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Humus has a characteristic black or dark brown color and is an accumulation of organic carbon. Besides the three major soil horizons of (A) surface/topsoil, (B) subsoil, and (C) substratum, some soils have an organic horizon (O) on the very surface. Hard bedrock (R) is not in a strict sense soil.

In classical[1] soil science, humus is the dark organic matter in soil that is formed by the decomposition of plant and animal matter. It is a kind of soil organic matter. It is rich in nutrients and retains moisture in the soil. Humus is the Latin word for "earth" or "ground".[2]

Inagriculture, "humus" sometimes also is used to describe mature or natural compost extracted from a woodland or other spontaneous source for use as a soil conditioner.[3] It is also used to describe a topsoil horizon that contains organic matter (humus type,[4] humus form,[5]orhumus profile[6]).

Humus has many nutrients that improve the health of soil, nitrogen being the most important. The ratio of carbontonitrogen (C:N) of humus commonly ranges between 8:1 and 15:1 with the median being about 12:1.[7] It also significantly improves (decrease) the bulk density of soil.[8] Humus is amorphous and lacks the cellular structure characteristic of organisms.[9]

A similar material, also called humus and often used as fertilizer after composting and if not judged contaminatedbypathogens, toxic heavy metals, and persistent organic pollutants according to standard tolerance levels,[10] is the solid residue of secondary wastewater treatment, also called sewage sludge treatment.[11]

Description

[edit]

The primary materials needed for the process of humification are plant detritus and dead animals and microbes, excreta of all soil-dwelling organisms, and also black carbon resulting from past fires.[12] The composition of humus varies with that of primary (plant) materials and secondary microbial and animal products. The decomposition rate of the different compounds will affect the composition of the humus.[13]

It is difficult to define humus precisely because it is a very complex substance which is not fully understood. Humus is different from decomposing soil organic matter. The latter looks rough and has visible remains of the original plant or animal matter. Fully humified humus, on the contrary, has a uniformly dark, spongy, and jelly-like appearance, and is amorphous; it may gradually decay over several years or persist for millennia.[14] It has no determinate shape, structure, or quality. However, when examined under a microscope, humus may reveal tiny plant, animal, or microbial remains that have been mechanically, but not chemically, degraded.[15] This suggests an ambiguous boundary between humus and soil organic matter, leading some authors to contest the use of the term humus and derived terms such as humic substancesorhumification.[16] However, humus can be considered as having distinct properties, mostly linked to its richness in functional groups, justifying its maintenance as a specific term.[17]

Fully formed humus is essentially a collection of very large and complex molecules formed in part from lignin and other polyphenolic molecules of the original plant material (foliage, wood, bark), in part from similar molecules that have been produced by microbes.[18] During decomposition processes these polyphenols are modified chemically so that they are able to join up with one another to form very large molecules. Some parts of these molecules are modified in such a way that protein molecules, amino acids, and amino sugars are able to attach themselves to the polyphenol “base” molecule. As protein contains both nitrogen and sulfur, this attachment gives humus a moderate content of these two important plant nutrients.[19]

Radiocarbon and other dating techniques have shown that the polyphenolic base of humus can be very old, but the protein attachments much younger. For example, one study showed an average age of 2560 years for the base part and only 510 years for the protein. It seems that microbes are able to pull protein off humus molecules rather more readily than they are able to break the polyphenolic base molecule itself. As protein is removed its place may be taken by younger protein, or this younger protein may attach itself to another part of the humus molecule.” (generally being a weak chelation bond).

The CSIRO publication describes the function of humus. “The most useful functions of humus are in improving soil structure and in providing a very large surface area that can hold nutrient elements until required by plants.” (The bond is also clearly strong enough to resist the nutrient elements dissolvable in rainwater but weak enough to have the nutrients available when required for plant life.)

Soil Carbon Sequestration is a constant variable in the soil. Only when it becomes stable molecular soil humus and acquires its multi-century permanence should it be considered to be of significance in removing the atmosphere’s current carbon dioxide overload.-->

There is little data available on the composition of forest humus because it is a complex mixture that is challenging for researchers to analyze. Researchers in the 1940s and 1960s tried using chemical separation to analyze plant and humic compounds in forest soil, but this proved impossible. Further research has been done in more recent years, though it remains an active field of study.[20][21][22]

Humification

[edit]

Microorganisms decompose a large portion of the soil organic matter into inorganic minerals that the roots of plants can absorb as nutrients. This process is termed "mineralization". In this process, nitrogen (nitrogen cycle) and the other nutrients (nutrient cycle) in the decomposed organic matter are recycled. Depending on the conditions in which the decomposition occurs, a fraction of the organic matter does not mineralize and instead is transformed by a process called "humification". Prior to modern analytical methods, early evidence led scientists to believe that humification resulted in concatenations of organic polymer resistant to the action of microorganisms,[23] however recent research has demonstrated that microorganisms are capable of digesting humus.[24]

Humification can occur naturally in soil or artificially in the production of compost. Organic matter is humified by a combination of saprotrophic fungi, bacteria, microbes and animals such as earthworms, nematodes, protozoa, and arthropods.[25][circular reference] Plant remains, including those that animals digested and excreted, contain organic compounds: sugars, starches, proteins, carbohydrates, lignins, waxes, resins, and organic acids. Decay in the soil begins with the decomposition of sugars and starches from carbohydrates, which decompose easily as detritivores initially invade the dead plant organs, while the remaining cellulose and lignin decompose more slowly.[26][page needed] Simple proteins, organic acids, starches, and sugars decompose rapidly, while crude proteins, fats, waxes, and resins remain relatively unchanged for longer periods of time.

Lignin, which is quickly transformed by white-rot fungi,[27] is one of the primary precursors of humus,[28] together with by-products of microbial[29] and animal[30] activity. The humus produced by humification is thus a mixture of compounds and complex biological chemicals of plant, animal, or microbial origin that has many functions and benefits in soil. Some judge earthworm humus (vermicompost) to be the optimal organic manure.[31]

Stability

[edit]

Much of the humus in most soils has persisted for more than 100 years, rather than having been decomposed into CO2, and can be regarded as stable; this organic matter has been protected from decomposition by microbial or enzyme action because it is hidden (occluded) inside small aggregates of soil particles, or tightly sorbedorcomplexedtoclays.[32] Most humus that is not protected in this way is decomposed within 10 years and can be regarded as less stable or more labile.

Stable humus contributes few plant-available nutrients in soil, but it helps maintain its physical structure.[33] A very stable form of humus is formed from the slow oxidation (redox) of soil carbon after the incorporation of finely powdered charcoal into the topsoil. This process is speculated to have been important in the formation of the unusually fertile Amazonian terra preta do Indio.[34][page needed] However, recent work[35] suggests that complex soil organic molecules may be much less stable than previously thought: “the available evidence does not support the formation of large-molecular-size and persistent ‘humic substances’ in soils. Instead, soil organic matter is a continuum of progressively decomposing organic compounds.″

Horizons

[edit]

Humus has a characteristic black or dark brown color and is organic due to an accumulation of organic carbon. Soil scientists use the capital letters O, A, B, C, and E to identify the master horizons, and lowercase letters for distinctions of these horizons. Most soils have three major horizons: the surface horizon (A), the subsoil (B), and the substratum (C). Some soils have an organic horizon (O) on the surface, but this horizon can also be buried. The master horizon (E) is used for subsurface horizons that have significantly lost minerals (eluviation). Bedrock, which is not soil, uses the letter R.

Benefits of soil organic matter and humus

[edit]

The importance of chemically stable humus is thought by some to be the fertility it provides to soils in both a physical and chemical sense,[36] though some agricultural experts put a greater focus on other features of it, such as its ability to suppress disease.[37] It helps the soil retain moisture[38] by increasing microporosity[39] and encourages the formation of good soil structure.[40][41] The incorporation of oxygen into large organic molecular assemblages generates many active, negatively charged sites that bind to positively charged ions (cations) of plant nutrients, making them more available to the plant by way of ion exchange.[42] Humus allows soil organisms to feed and reproduce and is often described as the "life-force" of the soil.[43][44]

See also

[edit]
  • Biomass
  • Biotic material
  • Detritus
  • Glomalin
  • Humic acid
  • Immobilization (soil science)
  • Mineralization (soil science)
  • Mycorrhizal fungi and soil carbon storage
  • Organic matter
  • Plant litter
  • Soil horizon
  • Soil science
  • Terra preta
  • References

    [edit]
    1. ^ Popkin, Gabriel (27 July 2021), A soil-science revolution upends plans to fight climate change, Quanta Magazine, retrieved 9 June 2024, "The latest edition of The Nature and Properties of Soils, published in 2016, cites Lehmann's 2015 paper and acknowledges that "our understanding of the nature and genesis of soil humus has advanced greatly since the turn of the century, requiring that some long-accepted concepts be revised or abandoned."
  • ^ "Humus". Retrieved 9 June 2024 – via Dictionary.com Random House Dictionary Unabridged.
  • ^ "Humus". Encyclopaedia Britannica Online. 2011. Retrieved 9 June 2024.
  • ^ Chertov, Oleg G.; Komarov, Alexander S.; Crocker, Graham; Grace, Peter; Klir, Jan; Körschens, Martin; Poulton, Paul R.; Richter, Daniel (1997). "Simulating trends of soil organic carbon in seven long-term experiments using the SOMM model of the humus types". Geoderma. 81 (1–2): 121–135. Bibcode:1997Geode..81..121C. doi:10.1016/S0016-7061(97)00085-2. Retrieved 9 June 2024.
  • ^ Brêthes, Alain; Brun, Jean-Jacques; Jabiol, Bernard; Ponge, Jean-François; Toutain, François (1995). "Classification of forest humus forms: a French proposal". Annales des Sciences Forestières. 52 (6): 535–46. doi:10.1051/forest:19950602. Retrieved 16 June 2024.
  • ^ Bernier, Nicolas (1998). "Earthworm feeding activity and development of the humus profile". Biology and Fertility of Soils. 26 (3): 215–23. doi:10.1007/s003740050370. Retrieved 16 June 2024.
  • ^ Weil, Ray R.; Brady, Nyle C. (2016). The nature and properties of soils (15th ed.). Columbus, Ohio: Pearson Education. p. 536. ISBN 9781292162232. Retrieved 16 June 2024.
  • ^ Bauer, Armand (1974). "Influence of soil organic matter on bulk density and available water capacity of soils" (PDF). Farm Research. 31 (5): 44–52. Retrieved 23 June 2024.
  • ^ Whitehead, D. C.; Tinsley, J. (1963). "The biochemistry of humus formation". Journal of the Science of Food and Agriculture. 14 (12): 849–57. doi:10.1002/jsfa.2740141201. Retrieved 23 June 2024.
  • ^ Brinton, William F. (2020). "Compost quality standards and guidelines, final report" (PDF). Cornell University. Ithaca, New York. Retrieved 7 July 2024.
  • ^ "Sewage treatment" (PDF). Retrieved 30 June 2024.
  • ^ Guggenberger, Georg (2005). "Humification and mineralization in soils". In Buscot, François; Varma, Ajit (eds.). Microorganisms in soils: roles in genesis and Functions (PDF). Soil biology. Vol. 3. Dordrecht, The Netherlands: Springer. pp. 85–106. doi:10.1007/3-540-26609-7_4. ISBN 978-3-540-26609-9. Retrieved 7 July 2024.
  • ^ Kögel-Knabner, Ingrid; Zech, Wolfgang; Hatcher, Patrick G. (1988). "Chemical composition of the organic matter in forest soils: the humus layer". Journal of Plant Nutrition and Soil Science. 151 (5): 331–40. doi:10.1002/jpln.19881510512. Retrieved 14 July 2024.
  • ^ Waksman, Selman A. (1936). Humus: origin, chemical composition and importance in nature. Baltimore, Maryland: Williams & Wilkins. ISBN 9780598966629. Retrieved 14 July 2024.
  • ^ Bernier, Nicolas; Ponge, Jean-François (1994). "Humus form dynamics during the sylvogenetic cycle in a mountain spruce forest". Soil Biology and Biochemistry. 26 (2): 183–220. doi:10.1016/0038-0717(94)90161-9. Retrieved 14 July 2024.
  • ^ Lehmann, Johannes; Kleber, Markus (2015). "The contentious nature of soil organic matter" (PDF). Nature. 528: 60–68. doi:10.1038/nature16069. Retrieved 14 July 2024.
  • ^ Ponge, Jean-François (2022). "Humus: dark side of life or intractable "aether"?". Pedosphere. 32 (4): 660–64. doi:10.1016/S1002-0160(21)60013-9. Retrieved 14 July 2024.
  • ^ Dou, Sen; Shan, Jun; Song, Xiangyun; Cao, Rui; Wu, Meng; Li, Chenglin; Guan, Song (April 2020). "Are humic substances soil microbial residues or unique synthesized compounds? A perspective on their distinctiveness". Pedosphere. 30 (2): 159–67. doi:10.1016/S1002-0160(20)60001-7. Retrieved 21 July 2024.
  • ^ Das, Subhasich; Bhattacharya, Satya Sundar (2017). "Significance of soil organic matter in relation to plants and their products". In Siddiqui, Mohammed Wasim; Bansal, Vasudha (eds.). Plant secondary metabolites. Volume 3. Their roles in stress ecophysiology (PDF). Palm Bay, Florida: Apple Academic Press. pp. 39–61. ISBN 978-1-77188-356-6. Retrieved 21 July 2024.
  • ^ Waksman SA. (1936). Humus. Origin, Chemical Composition and Importance in Nature. New York, NY: Williams and Wilkins
  • ^ Stevenson FJ. Humus Chemistry: Genesis, Composition, Reactions. (2nd). Wiley, 1994. ISBN 978-0-471-59474-1
  • ^ Maier RM. Chapter 16 - Biogeochemical Cycling. Environmental Microbiology (3rd). Academic Press, 2015. pp 339-373. ISBN 9780123946263 doi:10.1016/B978-0-12-394626-3.00016-8
  • ^ Weil, Ray R.; Brady, Nyle C. (2017). The Nature and Properties of Soils (15th ed.). Columbus, Ohio: Pearson Education (published April 2017). p. 549. ISBN 978-0-13-325448-8. LCCN 2016008568. OCLC 936004363. It is now thought that humic substances in soil extracts do not represent the nature of most of the organic matter as it exists in soil.
  • ^ Popkin, G. (2021). "A Soil-Science Revolution Upends Plans to Fight Climate Change". Quanta magazine. Soil researchers have concluded that even the largest, most complex molecules can be quickly devoured by soil's abundant and voracious microbes.
  • ^ Soil biology
  • ^ Berg, B.; McClaugherty, C. (2007). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration (2nd ed.). Springer. ISBN 978-3-540-74922-6.
  • ^ Levin, L.; Forchiassin, F.; Ramos, A. M. (2002). "Copper induction of lignin-modifying enzymes in the white-rot fungus Trametes trogii". Mycologia. 94 (3): 377–383. doi:10.2307/3761771. JSTOR 3761771. PMID 21156508.
  • ^ González-Pérez, M.; Vidal Torrado, P.; Colnago, L. A.; Martin-Neto, L.; Otero, X. L.; Milori, D. M. B. P.; Haenel Gomes, F. (2008). "13C NMR and FTIR spectroscopy characterization of humic acids in spodosols under tropical rain forest in southeastern Brazil". Geoderma. 146 (3–4): 425–433. Bibcode:2008Geode.146..425G. doi:10.1016/j.geoderma.2008.06.018.
  • ^ Knicker, H.; Almendros, G.; González-Vila, F. J.; Lüdemann, H. D.; Martin, F. (1995). "13C and 15N NMR analysis of some fungal melanins in comparison with soil organic matter". Organic Geochemistry. 23 (11–12): 1023–1028. Bibcode:1995OrGeo..23.1023K. doi:10.1016/0146-6380(95)00094-1.
  • ^ Muscoloa, A.; Bovalob, F.; Gionfriddob, F.; Nardi, S. (1999). "Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism". Soil Biology and Biochemistry. 31 (9): 1303–1311. doi:10.1016/S0038-0717(99)00049-8.
  • ^ "Vermiculture/Vermicompost". Agri.And.Nic.in. Port Blair: Department of Agriculture, Andaman & Nicobar Administration. 18 June 2011. Archived from the original on 17 January 2016. Retrieved 17 April 2009.
  • ^ Dungait, J. A.; Hopkins, D. W.; Gregory, A. S.; Whitmore, A. P. (2012). "Soil organic matter turnover is governed by accessibility not recalcitrance" (PDF). Global Change Biology. 18 (6): 1781–1796. Bibcode:2012GCBio..18.1781D. doi:10.1111/j.1365-2486.2012.02665.x. S2CID 86741232. Retrieved 30 August 2014.[permanent dead link]
  • ^ Oades, J. M. (1984). "Soil organic matter and structural stability: Mechanisms and implications for management". Plant and Soil. 76 (1–3): 319–337. doi:10.1007/BF02205590. S2CID 7195036.
  • ^ Lehmann, J.; Kern, D. C.; Glaser, B.; Woods, W. I. (2004). Amazonian Dark Earths: Origin, Properties, Management. Springer. ISBN 978-1-4020-1839-8.
  • ^ Lehmann, Johannes (1 December 2015). "The contentious nature of soil organic matter". Nature. 528 (7580): 60–68. Bibcode:2015Natur.528...60L. doi:10.1038/nature16069. PMID 26595271. S2CID 205246638.
  • ^ Hargitai, L. (1993). "The soil of organic matter content and humus quality in the maintenance of soil fertility and in environmental protection". Landscape and Urban Planning. 27 (2–4): 161–167. doi:10.1016/0169-2046(93)90044-E.
  • ^ Hoitink, H. A.; Fahy, P. C. (1986). "Basic for the control of soilborne plant pathogens with composts". Annual Review of Phytopathology. 24: 93–114. doi:10.1146/annurev.py.24.090186.000521.
  • ^ C.Michael Hogan. 2010. Abiotic factor. Encyclopedia of Earth. eds Emily Monosson and C. Cleveland. National Council for Science and the Environment Archived 8 June 2013 at the Wayback Machine. Washington DC
  • ^ De Macedo, J. R.; Do Amaral, Meneguelli; Ottoni, T. B.; Araujo, Jorge Araújo; de Sousa Lima, J. (2002). "Estimation of field capacity and moisture retention based on regression analysis involving chemical and physical properties in Alfisols and Ultisols of the state of Rio de Janeiro". Communications in Soil Science and Plant Analysis. 33 (13–14): 2037–2055. doi:10.1081/CSS-120005747. S2CID 98466747.
  • ^ Hempfling, R.; Schulten, H. R.; Horn, R. (1990). "Relevance of humus composition to the physical/mechanical stability of agricultural soils: a study by direct pyrolysis-mass spectrometry". Journal of Analytical and Applied Pyrolysis. 17 (3): 275–281. doi:10.1016/0165-2370(90)85016-G.
  • ^ Soil Development: Soil Properties Archived 28 November 2012 at the Wayback Machine
  • ^ a b Szalay, A. (1964). "Cation exchange properties of humic acids and their importance in the geochemical enrichment of UO2++ and other cations". Geochimica et Cosmochimica Acta. 28 (10): 1605–1614. Bibcode:1964GeCoA..28.1605S. doi:10.1016/0016-7037(64)90009-2.
  • ^ a b Elo, S.; Maunuksela, L.; Salkinoja-Salonen, M.; Smolander, A.; Haahtela, K. (2006). "Humus bacteria of Norway spruce stands: plant growth promoting properties and birch, red fescue and alder colonizing capacity". FEMS Microbiology Ecology. 31 (2): 143–152. doi:10.1111/j.1574-6941.2000.tb00679.x. PMID 10640667.
  • ^ a b Vreeken-Buijs, M. J.; Hassink, J.; Brussaard, L. (1998). "Relationships of soil microarthropod biomass with organic matter and pore size distribution in soils under different land use". Soil Biology and Biochemistry. 30: 97–106. doi:10.1016/S0038-0717(97)00064-3.
  • ^ Eyheraguibel, B.; Silvestrea, J. Morard (2008). "Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize" (PDF). Bioresource Technology. 99 (10): 4206–4212. doi:10.1016/j.biortech.2007.08.082. PMID 17962015.
  • ^ Zandonadi, D. B.; Santos, M. P.; Busato, J. G.; Peres, L. E. P.; Façanha, A. R. (2013). "Plant physiology as affected by humified organic matter". Theoretical and Experimental Plant Physiology. 25: 13–25. doi:10.1590/S2197-00252013000100003.
  • ^ Olness, A.; Archer, D. (2005). "Effect of organic carbon on available water in soil". Soil Science. 170 (2): 90–101. Bibcode:2005SoilS.170...90O. doi:10.1097/00010694-200502000-00002. S2CID 95336837.
  • ^ Effect of Organic Carbon on Available Water in Soil : Soil Science
  • ^ Kikuchi, R. (2004). "Deacidification effect of the litter layer on forest soil during snowmelt runoff: laboratory experiment and its basic formularization for simulation modeling". Chemosphere. 54 (8): 1163–1169. Bibcode:2004Chmsp..54.1163K. doi:10.1016/j.chemosphere.2003.10.025. PMID 14664845.
  • ^ Caesar-Tonthat, T. C. (2002). "Soil binding properties of mucilage produced by a basidiomycete fungus in a model system". Mycological Research (Submitted manuscript). 106 (8): 930–937. doi:10.1017/S0953756202006330.
  • ^ Huang, D. L.; Zeng, G. M.; Feng, C. L.; Hu, S.; Jiang, X. Y.; Tang, L.; Su, F. F.; Zhang, Y.; Zeng, W.; Liu, H. L. (2008). "Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity". Environmental Science and Technology. 42 (13): 4946–4951. Bibcode:2008EnST...42.4946H. doi:10.1021/es800072c. PMID 18678031.
  • ^ Amelung, W.; Bossio, D.; de Vries, W.; Kögel-Knabner, I.; Lehmann, J.; Amundson, R.; Bol, R.; Collins, C.; Lal, R.; Leifeld, J.; Minasny, B. (27 October 2020). "Towards a global-scale soil climate mitigation strategy". Nature Communications. 11 (1): 5427. Bibcode:2020NatCo..11.5427A. doi:10.1038/s41467-020-18887-7. ISSN 2041-1723. PMC 7591914. PMID 33110065.
  • ^ Tang, Chunyu; Li, Yuelei; Song, Jingpeng; Antonietti, Markus; Yang, Fan (25 June 2021). "Artificial humic substances improve microbial activity for binding CO2". iScience. 24 (6): 102647. Bibcode:2021iSci...24j2647T. doi:10.1016/j.isci.2021.102647. ISSN 2589-0042. PMC 8387571. PMID 34466779.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Humus&oldid=1235799581"

    Categories: 
    Composting
    Soil improvers
    Soil science
    Organic farming
    Hidden categories: 
    All articles with dead external links
    Articles with dead external links from April 2017
    Articles with permanently dead external links
    Webarchive template wayback links
    Articles with short description
    Short description is different from Wikidata
    Use dmy dates from April 2014
    All articles lacking reliable references
    Articles lacking reliable references from February 2017
    Wikipedia articles needing page number citations from July 2020
    Articles containing Spanish-language text
    Articles with BNF identifiers
    Articles with BNFdata identifiers
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NKC identifiers
     



    This page was last edited on 21 July 2024, at 08:17 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki