Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Nomenclature  





2 The "two-step" formation process  





3 Experimental evidence  





4 The solid surface charge density in EDL  





5 References  














Hybrid electric double layer







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The Hybrid electric double layer (Hybrid EDL) is a model to describe the formation of electric double layer considering the contribution of electron transfer at liquid-solid interface, which is firstly proposed by Wang et al.[1] in 2018.The major difference between the hybrid EDL model and the traditional EDL model is that the hybrid EDL model considers that there are both electrons and ions on the solid surface in the EDL, while the traditional EDL model considers that the solid surface has only adsorbed ions.

Nomenclature[edit]

The Hybrid EDL is also named after Prof. Zhong Lin Wang (Wang model), who proposed it in 2018.[citation needed]

The "two-step" formation process[edit]

The "two-step" formation process of hybrid electric double layer.

The formation of the Hybrid EDL can be described by the "two-step" processes. In the first step, the molecules and ions in the liquid impact the solid surface due to the thermal motion and the pressure from the liquid, while the overlap of the electron clouds of the solid atoms and water molecules leads to the electron transfer between them. Then, due to liquid flow or turbulence, the liquid molecules that are adjacent to the solid surface can be pushed off of the interface.

Experimental evidence[edit]

The key difference between the Hybrid EDL model and traditional EDL model is whether the electron transfer at liquid-solid interface exists. The electron transfer was verified experimentally at both nano-scale[2] and macro-scale.[3]Atnanoscale, it was found that the charges on the solid surface generated by contacting with the liquid can be removed by heating, and the decay of the surface charge density consistent with the thermionic emission theory, suggesting the existence of the electron transfer at liquid-solid interface.[2] At macroscale, it was noticed that the amount of transferred charge on the solid surface is much greater than the number of ions in the liquid that may by adsorbed to the surface, which also implies that the electron transfer play a dominant role in liquid-solid contact electrification (CE).

The solid surface charge density in EDL[edit]

In the Hybrid EDL, the surface charge density (electrons and ions) in the liquid-solid CE is not as dense as that appearing in text book drawing. For example, the experiments suggest that highest transferred electron density is −630 mCm−2 in the CE between SiO2 and DI water.[4]

References[edit]

  1. ^ Wang, Zhong Lin; Wang, Aurelia Chi (2019-11-01). "On the origin of contact-electrification". Materials Today. 30: 34–51. doi:10.1016/j.mattod.2019.05.016. ISSN 1369-7021. S2CID 189987682.
  • ^ a b Lin, Shiquan; Xu, Liang; Chi Wang, Aurelia; Wang, Zhong Lin (2020-01-21). "Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer". Nature Communications. 11 (1): 399. Bibcode:2020NatCo..11..399L. doi:10.1038/s41467-019-14278-9. ISSN 2041-1723. PMC 6972942. PMID 31964882.
  • ^ Nie, Jinhui; Ren, Zewei; Xu, Liang; Lin, Shiquan; Zhan, Fei; Chen, Xiangyu; Wang, Zhong Lin (2020). "Probing Contact-Electrification-Induced Electron and Ion Transfers at a Liquid–Solid Interface". Advanced Materials. 32 (2): 1905696. Bibcode:2020AdM....3205696N. doi:10.1002/adma.201905696. ISSN 1521-4095. PMID 31782572. S2CID 208357834.
  • ^ Israelachvili, Jacob N. (2011-01-01), Israelachvili, Jacob N. (ed.), "Chapter 14 - Electrostatic Forces between Surfaces in Liquids", Intermolecular and Surface Forces (Third Edition), San Diego: Academic Press, pp. 291–340, doi:10.1016/b978-0-12-375182-9.10014-4, ISBN 978-0-12-375182-9, retrieved 2021-12-12

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Hybrid_electric_double_layer&oldid=1198381298"

    Categories: 
    Surfaces
    Capacitors
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Orphaned articles from May 2022
    All orphaned articles
    All articles with unsourced statements
    Articles with unsourced statements from December 2021
     



    This page was last edited on 24 January 2024, at 00:07 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki