Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Notes  





2 See also  














Hydraulic action







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Hydraulic action, most generally, is the ability of moving water (flowing or waves) to dislodge and transport rock particles. This includes a number of specific erosional processes, including abrasion, at facilitated erosion, such as static erosion where water leaches salts and floats off organic material from unconsolidated sediments, and from chemical erosion more often called chemical weathering. It is a mechanical process, in which the moving water current flows against the banks and bed of a river, thereby removing rock particles. A primary example of hydraulic action is a wave striking a cliff face which compresses the air in cracks of the rocks. This exerts pressure on the surrounding rock which can progressively crack, break, splinter and detach rock particles. This is followed by the decompression of the air as the wave retreats which can occur suddenly with explosive force which additionally weakens the rock. Cracks are gradually widened so each wave compresses more air, increasing the explosive force of its release. Thus, the effect intensifies in a 'positive feedback' system. Over time, as the cracks may grow they sometimes form a sea cave. The broken pieces that fall off produce two additional types of erosion, abrasion (sandpapering) and attrition. In corrasion, the newly formed chunks are thrown against the rock face. Attrition is a similar effect caused by eroded particles after they fall to the sea bed where they are subjected to further wave action. In coastal areas wave hydraulic action is often the most important form of erosion.

Tools to stem the erosion of rivers in the 18th century

Similarly, where hydraulic action is strong enough to loosen sediment along a stream bed and its banks; this will take rocks and particles from the banks and bed of the stream and add this to the stream's load. This process is the result of friction between the moving water and the static stream bed and banks. This friction increases with the speed of the water and once loosened the smaller particles are held in suspension by the force of the flowing water, these suspended particles can scour the sides and bottom of the stream. The scouring action produces distinctive markings on streams beds such as ripple marks, fluting, and crescent marks.[1] The larger particles and even large rocks are scooted (dragged) along the bottom in a process known as traction which causes attrition, and are often "bounced" along in a process known as saltation where the force of the water temporarily lifts the rock particle which then crashes back into the bed dislodging other particles.[2]

Hydraulic action also occurs as a stream tumbles over a waterfall to crash onto the rocks below. It usually leads to the formation of a plunge pool below the waterfall due in part to corrosion from the stream's load, but more to a scouring action as vortices form in the water as it escapes downstream. Hydraulic action can also cause the breakdown of river banks since there are water bubbles which enter the banks and collapse them when they expand.

Notes[edit]

  1. ^ Coja Isabelle and Renard, Maurice (2002) Sedimentology (translation of Sédimentologie from French) Lisse, Exton, Pennsylvania, pages 143–144, ISBN 978-90-5809-265-6
  • ^ Ritter, Michael E. (2006) "Geologic Work of Streams" Archived 2012-05-06 at the Wayback Machine The Physical Environment: an Introduction to Physical Geography OCLC 79006225
  • See also[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Hydraulic_action&oldid=1203394946"

    Categories: 
    Hydrology
    Erosion
    Geological processes
    Hidden categories: 
    Webarchive template wayback links
    Articles with short description
    Short description with empty Wikidata description
     



    This page was last edited on 4 February 2024, at 20:07 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki