Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Overview  





2 Hypoelasticity and objective stress rates  





3 See also  





4 Notes  





5 Bibliography  














Hypoelastic material






Deutsch
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Incontinuum mechanics, a hypoelastic material[1] is an elastic material that has a constitutive model independent of finite strain measures except in the linearized case. Hypoelastic material models are distinct from hyperelastic material models (or standard elasticity models) in that, except under special circumstances, they cannot be derived from a strain energy density function.

Overview

[edit]

A hypoelastic material can be rigorously defined as one that is modeled using a constitutive equation satisfying the following two criteria:[2]

  1. The Cauchy stress at time depends only on the order in which the body has occupied its past configurations, but not on the time rate at which these past configurations were traversed. As a special case, this criterion includes a Cauchy elastic material, for which the current stress depends only on the current configuration rather than the history of past configurations.
  2. There is a tensor-valued function such that in which is the material rate of the Cauchy stress tensor, and is the spatial velocity gradient tensor.

If only these two original criteria are used to define hypoelasticity, then hyperelasticity would be included as a special case, which prompts some constitutive modelers to append a third criterion that specifically requires a hypoelastic model to not be hyperelastic (i.e., hypoelasticity implies that stress is not derivable from an energy potential). If this third criterion is adopted, it follows that a hypoelastic material might admit nonconservative adiabatic loading paths that start and end with the same deformation gradient but do not start and end at the same internal energy.

Note that the second criterion requires only that the function exists. As explained below, specific formulations of hypoelastic models typically employ a so-called objective stress rate so that the function exists only implicitly.

Hypoelastic material models frequently take the form where is an objective rate of the Kirchhoff stress (), is the deformation rate tensor, and is the so-called elastic tangent stiffness tensor, which varies with stress itself and is regarded as a material property tensor. In hyperelasticity, the tangent stiffness generally must also depend on the deformation gradient in order to properly account for distortion and rotation of anisotropic material fiber directions.[3]

Hypoelasticity and objective stress rates

[edit]

In many practical problems of solid mechanics, it is sufficient to characterize material deformation by the small (or linearized) strain tensor where are the components of the displacements of continuum points, the subscripts refer to Cartesian coordinates , and the subscripts preceded by a comma denote partial derivatives (e.g., ). But there are also many problems where the finiteness of strain must be taken into account. These are of two kinds:

  1. large nonlinear elastic deformations possessing a potential energy, (exhibited, e.g., by rubber), in which the stress tensor components are obtained as the partial derivatives of with respect to the finite strain tensor components; and
  2. inelastic deformations possessing no potential, in which the stress-strain relation is defined incrementally.

In the former kind, the total strain formulation described in the article on finite strain theory is appropriate. In the latter kind an incremental (or rate) formulation is necessary and must be used in every load or time step of a finite element computer program using updated Lagrangian procedure. The absence of a potential raises intricate questions due to the freedom in the choice of finite strain measure and characterization of the stress rate.

For a sufficiently small loading step (or increment), one may use the deformation rate tensor (or velocity strain) or increment representing the linearized strain increment from the initial (stressed and deformed) state in the step. Here the superior dot represents the material time derivative ( following a given material particle), denotes a small increment over the step, = time, and = material point velocity or displacement rate.

However, it would not be objective to use the time derivative of the Cauchy (or true) stress . This stress, which describes the forces on a small material element imagined to be cut out from the material as currently deformed, is not objective because it varies with rigid body rotations of the material. The material points must be characterized by their initial coordinates (called Lagrangian) because different material particles are contained in the element that is cut out (at the same location) before and after the incremental deformation.

Consequently, it is necessary to introduce the so-called objective stress rate , or the corresponding increment . The objectivity is necessary for to be functionally related to the element deformation. It means that that must be invariant with respect to coordinate transformations (particularly rotations) and must characterize the state of the same material element as it deforms.

See also

[edit]

Notes

[edit]
  1. ^ Truesdell (1963).
  • ^ Truesdell, Clifford; Noll, Walter (2004). The Non-linear Field Theories of Mechanics (3rd ed.). Berlin Heidelberg New York: Springer-Verlag. p. 401. ISBN 3-540-02779-3.
  • ^ Brannon, R.M. (1998). "Caveats concerning conjugate stress and strain measures for frame indifferent anisotropic elasticity". Acta Mechanica. Vol. 129. pp. 107–116.
  • Bibliography

    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Hypoelastic_material&oldid=1087557612"

    Categories: 
    Continuum mechanics
    Elasticity (physics)
     



    This page was last edited on 13 May 2022, at 05:00 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki