Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Types of structural ice  





3 Effect  





4 Icing prevention and removal  





5 Icing on unmanned aircraft  





6 Accidents involving icing conditions  





7 References  





8 External links  














Icing conditions






Français
עברית
Lietuvių
Română
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 





Listen to this article

From Wikipedia, the free encyclopedia
 


Ice accumulated and partially removed on the wing of a Beechcraft King Air

Inaviation, icing conditions are atmospheric conditions that can lead to the formation of water ice on an aircraft. Ice accretion and accumulation can affect the external surfaces of an aircraft – in which case it is referred to as airframe icing[1] – or the engine, resulting in carburetor icing, air inlet icing or more generically engine icing.[2] These phenomena may possibly but do not necessarily occur together. Both airframe and engine icing have resulted in numerous fatal accidents in aviation history.

Not all aircraft, especially general aviation aircraft, are certified for flight into known icing (FIKI) – that is flying into areas with icing conditions certain or likely to exist, based on pilot reports, observations, and forecasts.[3] In order to be FIKI-certified, aircraft must be fitted with suitable ice protection systems to prevent accidents by icing.

Definition

[edit]

Icing conditions exist when the air contains droplets of supercooled liquid water. They freeze on contact with a potential nucleation site, which in this case is the parts of the aircraft, causing icing. Icing conditions are characterized quantitatively by the average droplet size, the liquid water content and the air temperature. These parameters affect the extent, type and speed that characterize the formation of ice on an aircraft. Federal Aviation Regulations contain a definition of icing conditions[4] that some aircraft are certified to fly into. So-called SLD, or supercooled large droplet, conditions are those that exceed that specification and represent a particular hazard to aircraft, which all aircraft must try to avoid.

Qualitatively, pilot reports indicate icing conditions in terms of their effect upon the aircraft, and will be dependent upon the preexisting capabilities of the aircraft. Different aircraft may report the same quantitative conditions as different levels of icing as a result. Ice detectors are often used to indicate the presence of icing conditions.

Types of structural ice

[edit]
Supercooled large droplet (SLD) ice on a NASA Twin Otter research aircraft

Effect

[edit]
Ice protrusions on a rotor blade obtained in a wind tunnelatNASA Glenn Research Center

The wing will ordinarily stall at a lower angle of attack, and thus a higher airspeed, when contaminated with ice . Even small amounts of ice will have an effect, and if the ice is rough, it can be a large effect nonetheless. Thus an increase in approach speed is advisable if ice remains on the wings. How much of an increase depends on both the aircraft type and amount of ice. Stall characteristics of an aircraft with ice-contaminated wings will be degraded, and serious roll control problems are not unusual. The ice accretion may be asymmetric between the two wings which requires calibrating. Also, the outer part of a wing, which is ordinarily thinner and thus a better collector of ice, may stall first rather than last.

Icing prevention and removal

[edit]
De-icing an Embraer Legacy 450 prior to the flight.

Several methods exist to reduce the dangers of icing, using ice protection systems. The first, and simplest, is to avoid icing conditions altogether, but for many flights this is not practical.

If ice (or other contaminants) are present on an aircraft prior to takeoff, they must be removed from critical surfaces. Removal can take many forms:

All of these methods remove existing contamination, but provide no practical protection in icing conditions. If icing conditions exist, or are expected before takeoff, then anti-icing fluids are used. These are thicker than deicing fluids and resist the effects of snow and rain for some time. They are intended to shear off the aircraft during takeoff and provide no inflight protection.

Adeicing boot on the wing of a Dash 8 aircraft. The ridges are the result of the boot being inflated with air to crack and remove accumulated ice.

To protect an aircraft against icing in-flight, various forms of anti-icing or deicing are used:

In all these cases, usually only critical aircraft surfaces and components are protected. In particular, only the leading edge of a wing is usually protected.

Carburetor heat is applied to carbureted engines to prevent and clear icing. Fuel-injected engines are not susceptible to carburetor icing, but can suffer from blocked inlets. In these engines, an alternate air source is often available.

There is a difference between deicing and anti-icing. Deicing refers to the removal of ice from the airframe; anti-icing refers to the prevention of ice accumulating on the airframe.

Icing on unmanned aircraft

[edit]

Unmanned aircraft are an emerging technology with a large variety of commercial and military applications. In-flight icing occurs during flight in supercooled clouds or freezing precipitation and is a potential hazard to all aircraft. In-flight icing on UAVs imposes a major limitation on the operational envelope.[5]

Unmanned aircraft are more sensitive and susceptible to icing compared to manned aircraft.[6] The main differences between UAVs and manned aircraft when it comes to icing are:

The parts of the UAV most exposed to icing are the airspeed sensor, the leading edge of aerodynamic surfaces, rotors, and propellers.

Icing on UAVs is a global phenomenon, and icing conditions at the operational altitude can occur year round around the world. However, icing risks are particularly big in the sub arctics, Arctic and Antarctic. In large parts of the Nordics, for example, icing conditions are present from 35% to more than 80% of the time from September through May.[7]

Accidents involving icing conditions

[edit]
Date Accident
15 October 1943 American Airlines Flight 63 (Flagship Missouri)
1 December 1974 Northwest Orient Airlines Flight 6231
13 January 1982 Air Florida Flight 90
12 December 1985 Arrow Air Flight 1285R
15 November 1987 Continental Airlines Flight 1713
10 March 1989 Air Ontario Flight 1363
17 February 1991 Ryan International Airlines Flight 590
27 December 1991 Scandinavian Airlines System Flight 751
22 March 1992 USAir Flight 405
31 October 1994 American Eagle Flight 4184
9 January 1997 Comair Flight 3272
21 December 2002 TransAsia Airways Flight 791
21 November 2004 China Eastern Airlines Flight 5210
16 August 2005 West Caribbean Airways Flight 708
12 February 2009 Colgan Air Flight 3407
1 June 2009 Air France Flight 447
4 November 2010 Aero Caribbean Flight 883
9 January 2011 Iran Air Flight 277
18 May 2011 Sol Líneas Aéreas Flight 5428
24 July 2014 Air Algérie Flight 5017
11 February 2018 Saratov Airlines Flight 703

References

[edit]
  1. ^ Wadel, Mary (3 August 2017). "Airframe Icing". NASA Glenn Research Center. National Aeronautics and Space Administration. Retrieved 8 June 2019.
  • ^ Wadel, Mary (31 July 2017). "Engine Icing". NASA Glenn Research Center. National Aeronautics and Space Administration. Retrieved 8 June 2019.
  • ^ Yodice, John S. (1 August 2005). "The law on 'known icing'". Vol. 48, no. 8. AOPA Pilot Magazine. Archived from the original on 1 January 2015. Retrieved 25 April 2013. {{cite magazine}}: Cite magazine requires |magazine= (help)
  • ^ "Federal Aviation Regulations, Part 25, Appendix C". Archived from the original on 2012-03-19. Retrieved 2008-09-20.
  • ^ Hann, Richard; Johansen, Tor (2020). "Unsettled Topics in Unmanned Aerial Vehicle Icing (EPR2020008 Research Report) - SAE Mobilus". saemobilus.sae.org. doi:10.4271/epr2020008. hdl:11250/3113980. S2CID 226200723. Retrieved 2021-02-12.
  • ^ Hann, Richard (2020). Atmospheric Ice Accretions, Aerodynamic Icing Penalties, and Ice Protection Systems on Unmanned Aerial Vehicles. NTNU. ISBN 978-82-326-4749-1.
  • ^ a b "UAV Atmospheric Icing Limitations". May 2021. Retrieved 2021-12-08.
  • [edit]

    Media related to Icing in aviation at Wikimedia Commons

    Listen to this article (7 minutes)
    Spoken Wikipedia icon
    This audio file was created from a revision of this article dated 9 December 2017 (2017-12-09), and does not reflect subsequent edits.

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Icing_conditions&oldid=1208844982"

    Categories: 
    Weather hazards to aircraft
    Ice in transportation
    Frost and rime
    Hidden categories: 
    CS1 errors: missing periodical
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from December 2019
    All articles needing additional references
    Articles using small message boxes
    Incomplete lists from December 2019
    Commons category link is on Wikidata
    Articles with hAudio microformats
    Spoken articles
     



    This page was last edited on 19 February 2024, at 05:04 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki