Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Definitions and motivation  





3 Examples and properties  





4 Types of ideals  





5 Ideal operations  





6 Examples of ideal operations  





7 Radical of a ring  





8 Extension and contraction of an ideal  





9 Generalizations  





10 See also  





11 Notes  





12 References  





13 External links  














Ideal (ring theory)






العربية
Български
Català
Чӑвашла
Čeština
Dansk
Deutsch
Eesti
Ελληνικά
Español
Esperanto
فارسی
Français

Bahasa Indonesia
Interlingua
Italiano
עברית
Қазақша
Lombard
Magyar
Nederlands

Norsk bokmål
Norsk nynorsk
Polski
Português
Română
Русский
Slovenčina
Slovenščina
Српски / srpski
Suomi
Svenska
ி
Українська
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikibooks
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group.

Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements of the ring. For instance, the prime ideals of a ring are analogous to prime numbers, and the Chinese remainder theorem can be generalized to ideals. There is a version of unique prime factorization for the ideals of a Dedekind domain (a type of ring important in number theory).

The related, but distinct, concept of an idealinorder theory is derived from the notion of ideal in ring theory. A fractional ideal is a generalization of an ideal, and the usual ideals are sometimes called integral ideals for clarity.

History[edit]

Ernst Kummer invented the concept of ideal numbers to serve as the "missing" factors in number rings in which unique factorization fails; here the word "ideal" is in the sense of existing in imagination only, in analogy with "ideal" objects in geometry such as points at infinity.[1] In 1876, Richard Dedekind replaced Kummer's undefined concept by concrete sets of numbers, sets that he called ideals, in the third edition of Dirichlet's book Vorlesungen über Zahlentheorie, to which Dedekind had added many supplements.[1][2][3] Later the notion was extended beyond number rings to the setting of polynomial rings and other commutative rings by David Hilbert and especially Emmy Noether.

Definitions and motivation[edit]

For an arbitrary ring , let be its additive group. A subset I is called a left idealof if it is an additive subgroup of that "absorbs multiplication from the left by elements of "; that is, is a left ideal if it satisfies the following two conditions:

  1. is a subgroupof,
  2. For every and every , the product is in .

Aright ideal is defined with the condition replaced by . A two-sided ideal is a left ideal that is also a right ideal, and is sometimes simply called an ideal. In the language of modules, the definitions mean that a left (resp. right, two-sided) ideal of is an -submoduleof when is viewed as a left (resp. right, bi-) -module. When is a commutative ring, the definitions of left, right, and two-sided ideal coincide, and the term ideal is used alone.

To understand the concept of an ideal, consider how ideals arise in the construction of rings of "elements modulo". For concreteness, let us look at the ring of integers modulo given an integer ( is a commutative ring). The key observation here is that we obtain by taking the integer line and wrapping it around itself so that various integers get identified. In doing so, we must satisfy two requirements:

  1. must be identified with 0 since is congruent to 0 modulo .
  2. the resulting structure must again be a ring.

The second requirement forces us to make additional identifications (i.e., it determines the precise way in which we must wrap around itself). The notion of an ideal arises when we ask the question:

What is the exact set of integers that we are forced to identify with 0?

The answer is, unsurprisingly, the set of all integers congruent to 0 modulo . That is, we must wrap around itself infinitely many times so that the integers will all align with 0. If we look at what properties this set must satisfy in order to ensure that is a ring, then we arrive at the definition of an ideal. Indeed, one can directly verify that is an ideal of .

Remark. Identifications with elements other than 0 also need to be made. For example, the elements in must be identified with 1, the elements in must be identified with 2, and so on. Those, however, are uniquely determined by since is an additive group.

We can make a similar construction in any commutative ring : start with an arbitrary , and then identify with 0 all elements of the ideal . It turns out that the ideal is the smallest ideal that contains , called the ideal generatedby. More generally, we can start with an arbitrary subset , and then identify with 0 all the elements in the ideal generated by : the smallest ideal such that . The ring that we obtain after the identification depends only on the ideal and not on the set that we started with. That is, if , then the resulting rings will be the same.

Therefore, an ideal of a commutative ring captures canonically the information needed to obtain the ring of elements of modulo a given subset . The elements of , by definition, are those that are congruent to zero, that is, identified with zero in the resulting ring. The resulting ring is called the quotientofby and is denoted . Intuitively, the definition of an ideal postulates two natural conditions necessary for to contain all elements designated as "zeros" by :

  1. is an additive subgroup of : the zero 0 of is a "zero" , and if and are "zeros", then is a "zero" too.
  2. Any multiplied by a "zero" is a "zero" .

It turns out that the above conditions are also sufficient for to contain all the necessary "zeros": no other elements have to be designated as "zero" in order to form . (In fact, no other elements should be designated as "zero" if we want to make the fewest identifications.)

Remark. The above construction still works using two-sided ideals even if is not necessarily commutative.

Examples and properties[edit]

(For the sake of brevity, some results are stated only for left ideals but are usually also true for right ideals with appropriate notation changes.)

(since such a span is the smallest left ideal containing X.)[note 2] A right (resp. two-sided) ideal generated by X is defined in the similar way. For "two-sided", one has to use linear combinations from both sides; i.e.,

Types of ideals[edit]

To simplify the description all rings are assumed to be commutative. The non-commutative case is discussed in detail in the respective articles.

Ideals are important because they appear as kernels of ring homomorphisms and allow one to define factor rings. Different types of ideals are studied because they can be used to construct different types of factor rings.

Two other important terms using "ideal" are not always ideals of their ring. See their respective articles for details:

Ideal operations[edit]

The sum and product of ideals are defined as follows. For and , left (resp. right) ideals of a ring R, their sum is

,

which is a left (resp. right) ideal, and, if are two-sided,

i.e. the product is the ideal generated by all products of the form ab with ain and bin.

Note is the smallest left (resp. right) ideal containing both and (or the union ), while the product is contained in the intersection of and .

The distributive law holds for two-sided ideals ,

If a product is replaced by an intersection, a partial distributive law holds:

where the equality holds if contains or.

Remark: The sum and the intersection of ideals is again an ideal; with these two operations as join and meet, the set of all ideals of a given ring forms a complete modular lattice. The lattice is not, in general, a distributive lattice. The three operations of intersection, sum (or join), and product make the set of ideals of a commutative ring into a quantale.

If are ideals of a commutative ring R, then in the following two cases (at least)

(More generally, the difference between a product and an intersection of ideals is measured by the Tor functor: .[11])

An integral domain is called a Dedekind domain if for each pair of ideals , there is an ideal such that .[12] It can then be shown that every nonzero ideal of a Dedekind domain can be uniquely written as a product of maximal ideals, a generalization of the fundamental theorem of arithmetic.

Examples of ideal operations[edit]

In we have

since is the set of integers that are divisible by both and .

Let and let . Then,

In the first computation, we see the general pattern for taking the sum of two finitely generated ideals, it is the ideal generated by the union of their generators. In the last three we observe that products and intersections agree whenever the two ideals intersect in the zero ideal. These computations can be checked using Macaulay2.[13][14][15]

Radical of a ring[edit]

Ideals appear naturally in the study of modules, especially in the form of a radical.

For simplicity, we work with commutative rings but, with some changes, the results are also true for non-commutative rings.

Let R be a commutative ring. By definition, a primitive idealofR is the annihilator of a (nonzero) simple R-module. The Jacobson radical ofR is the intersection of all primitive ideals. Equivalently,

Indeed, if is a simple module and x is a nonzero element in M, then and , meaning is a maximal ideal. Conversely, if is a maximal ideal, then is the annihilator of the simple R-module . There is also another characterization (the proof is not hard):

For a not-necessarily-commutative ring, it is a general fact that is a unit element if and only if is (see the link) and so this last characterization shows that the radical can be defined both in terms of left and right primitive ideals.

The following simple but important fact (Nakayama's lemma) is built-in to the definition of a Jacobson radical: if M is a module such that , then M does not admit a maximal submodule, since if there is a maximal submodule , and so , a contradiction. Since a nonzero finitely generated module admits a maximal submodule, in particular, one has:

If and M is finitely generated, then .

A maximal ideal is a prime ideal and so one has

where the intersection on the left is called the nilradicalofR. As it turns out, is also the set of nilpotent elementsofR.

IfR is an Artinian ring, then is nilpotent and . (Proof: first note the DCC implies for some n. If (DCC) is an ideal properly minimal over the latter, then . That is, , a contradiction.)

Extension and contraction of an ideal[edit]

Let A and B be two commutative rings, and let f : AB be a ring homomorphism. If is an ideal in A, then need not be an ideal in B (e.g. take f to be the inclusion of the ring of integers Z into the field of rationals Q). The extension ofinB is defined to be the ideal in B generated by . Explicitly,

If is an ideal of B, then is always an ideal of A, called the contraction oftoA.

Assuming f : AB is a ring homomorphism, is an ideal in A, is an ideal in B, then:

It is false, in general, that being prime (or maximal) in A implies that is prime (or maximal) in B. Many classic examples of this stem from algebraic number theory. For example, embedding . In , the element 2 factors as where (one can show) neither of are units in B. So is not prime in B (and therefore not maximal, as well). Indeed, shows that , , and therefore .

On the other hand, if fissurjective and then:

Remark: Let K be a field extensionofL, and let B and A be the rings of integersofK and L, respectively. Then B is an integral extensionofA, and we let f be the inclusion map from AtoB. The behaviour of a prime ideal ofA under extension is one of the central problems of algebraic number theory.

The following is sometimes useful:[16] a prime ideal is a contraction of a prime ideal if and only if . (Proof: Assuming the latter, note intersects , a contradiction. Now, the prime ideals of correspond to those in B that are disjoint from . Hence, there is a prime ideal ofB, disjoint from , such that is a maximal ideal containing . One then checks that lies over . The converse is obvious.)

Generalizations[edit]

Ideals can be generalized to any monoid object , where is the object where the monoid structure has been forgotten. A left idealof is a subobject that "absorbs multiplication from the left by elements of "; that is, is a left ideal if it satisfies the following two conditions:

  1. is a subobjectof
  2. For every and every , the product is in .

Aright ideal is defined with the condition "" replaced by "'". A two-sided ideal is a left ideal that is also a right ideal, and is sometimes simply called an ideal. When is a commutative monoid object respectively, the definitions of left, right, and two-sided ideal coincide, and the term ideal is used alone.

An ideal can also be thought of as a specific type of R-module. If we consider as a left -module (by left multiplication), then a left ideal is really just a left sub-moduleof. In other words, is a left (right) ideal of if and only if it is a left (right) -module that is a subset of . is a two-sided ideal if it is a sub--bimodule of .

Example: If we let , an ideal of is an abelian group that is a subset of , i.e. for some . So these give all the ideals of .

See also[edit]

Notes[edit]

  1. ^ Some authors call the zero and unit ideals of a ring R the trivial idealsofR.
  • ^ IfR does not have a unit, then the internal descriptions above must be modified slightly. In addition to the finite sums of products of things in X with things in R, we must allow the addition of n-fold sums of the form x + x + ... + x, and n-fold sums of the form (−x) + (−x) + ... + (−x) for every xinX and every n in the natural numbers. When R has a unit, this extra requirement becomes superfluous.
  • References[edit]

    1. ^ a b John Stillwell (2010). Mathematics and its history. p. 439.
  • ^ Harold M. Edwards (1977). Fermat's last theorem. A genetic introduction to algebraic number theory. p. 76.
  • ^ Everest G., Ward T. (2005). An introduction to number theory. p. 83.
  • ^ a b c Dummit & Foote (2004), p. 243.
  • ^ Lang 2005, Section III.2
  • ^ Dummit & Foote (2004), p. 244.
  • ^ Because simple commutative rings are fields. See Lam (2001). A First Course in Noncommutative Rings. p. 39.
  • ^ Dummit & Foote (2004), p. 255.
  • ^ Dummit & Foote (2004), p. 251.
  • ^ Matsumura, Hideyuki (1987). Commutative Ring Theory. Cambridge: Cambridge University Press. p. 132. ISBN 9781139171762.
  • ^ Eisenbud 1995, Exercise A 3.17
  • ^ Milnor (1971), p. 9.
  • ^ "ideals". www.math.uiuc.edu. Archived from the original on 2017-01-16. Retrieved 2017-01-14.
  • ^ "sums, products, and powers of ideals". www.math.uiuc.edu. Archived from the original on 2017-01-16. Retrieved 2017-01-14.
  • ^ "intersection of ideals". www.math.uiuc.edu. Archived from the original on 2017-01-16. Retrieved 2017-01-14.
  • ^ Atiyah & Macdonald (1969), Proposition 3.16.
  • Dummit, David Steven; Foote, Richard Martin (2004). Abstract algebra (Third ed.). Hoboken, NJ: John Wiley & Sons, Inc. ISBN 9780471433347.
  • Eisenbud, David (1995), Commutative Algebra with a View toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-5350-1, ISBN 978-0-387-94268-1, MR 1322960
  • Lang, Serge (2005). Undergraduate Algebra (Third ed.). Springer-Verlag. ISBN 978-0-387-22025-3.
  • Hazewinkel, Michiel; Gubareni, Nadiya; Gubareni, Nadezhda Mikhaĭlovna; Kirichenko, Vladimir V. (2004). Algebras, rings and modules. Vol. 1. Springer. ISBN 1-4020-2690-0.
  • Milnor, John Willard (1971). Introduction to algebraic K-theory. Annals of Mathematics Studies. Vol. 72. Princeton, NJ: Princeton University Press. ISBN 9780691081014. MR 0349811. Zbl 0237.18005.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Ideal_(ring_theory)&oldid=1218915733"

    Categories: 
    Ideals (ring theory)
    Algebraic structures
    Commutative algebra
    Algebraic number theory
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles with FAST identifiers
    Articles with BNF identifiers
    Articles with BNFdata identifiers
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 14 April 2024, at 17:06 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki