Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Instability in control systems  





2 Instability in solid mechanics  





3 Fluid instabilities  





4 Plasma instabilities  





5 Instabilities of stellar systems  





6 Joint instabilities  





7 Notes  





8 External links  














Instability






Asturianu
Català
Deutsch
Español
فارسی
Français
ि
Italiano

Português
Русский
Slovenščina
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


A ball on the top of a hill is an unstable situation.

Indynamical systems instability means that some of the outputs or internal states increase with time, without bounds.[1] Not all systems that are not stable are unstable; systems can also be marginally stable or exhibit limit cycle behavior.

Instructural engineering, a structural beam or column can become unstable when excessive compressive load is applied. Beyond a certain threshold, structural deflections magnify stresses, which in turn increases deflections. This can take the form of buckling or crippling. The general field of study is called structural stability.

Atmospheric instability is a major component of all weather systems on Earth.

Instability in control systems[edit]

In the theory of dynamical systems, a state variable in a system is said to be unstable if it evolves without bounds. A system itself is said to be unstable if at least one of its state variables is unstable.

Incontinuous time control theory, a system is unstable if any of the roots of its characteristic equation has real part greater than zero (or if zero is a repeated root). This is equivalent to any of the eigenvalues of the state matrix having either real part greater than zero, or, for the eigenvalues on the imaginary axis, the algebraic multiplicity being larger than the geometric multiplicity.[clarification needed] The equivalent condition in discrete time is that at least one of the eigenvalues is greater than 1 in absolute value, or that two or more eigenvalues are equal and of unit absolute value.

Instability in solid mechanics[edit]

Fluid instabilities[edit]

Hydrodynamics simulation of the Rayleigh–Taylor instability[3]
Unstable flow structure generated from the collision of two impinging jets.

Fluid instabilities occur in liquids, gases and plasmas, and are often characterized by the shape that form; they are studied in fluid dynamics and magnetohydrodynamics. Fluid instabilities include:

Plasma instabilities[edit]

Plasma instabilities can be divided into two general groups (1) hydrodynamic instabilities (2) kinetic instabilities. Plasma instabilities are also categorised into different modes – see this paragraph in plasma stability.

Instabilities of stellar systems[edit]

Galaxies and star clusters can be unstable, if small perturbations in the gravitational potential cause changes in the density that reinforce the original perturbation. Such instabilities usually require that the motions of stars be highly correlated, so that the perturbation is not "smeared out" by random motions. After the instability has run its course, the system is typically "hotter" (the motions are more random) or rounder than before. Instabilities in stellar systems include:

Joint instabilities[edit]

The most common residual disability after any sprain in the body is instability. Mechanical instability includes insufficient stabilizing structures and mobility that exceed the physiological limits. Functional instability involves recurrent sprains or a feeling of giving way of the injured joint.[6] Injuries cause proprioceptive deficits and impaired postural control in the joint. Individuals with muscular weakness, occult instability, and decreased postural control are more susceptible to injury than those with better postural control. Instability leads to an increase in postural sway, the measurement of the time and distance a subject spends away from an ideal center of pressure. The measurement of a subject's postural sway can be calculated through testing center of pressure (CoP), which is defined as the vertical projection of center of mass on the ground. Investigators have theorized that if injuries to joints cause deafferentation, the interruption of sensory nerve fibers, and functional instability, then a subject's postural sway should be altered.[7] Joint stability can be enhanced by the use of an external support system, like a brace, to alter body mechanics. The mechanical support provided by a brace provides cutaneous afferent feedback in maintaining postural control and increasing stability.

Notes[edit]

  1. ^ "Definition of INSTABILITY". www.merriam-webster.com. Retrieved 23 April 2018.
  • ^ "Definition of BAROCLINIC INSTABILITY". www.merriam-webster.com. Retrieved 23 April 2018.
  • ^ Shengtai Li; Hui Li. "Parallel AMR Code for Compressible MHD or HD Equations". Los Alamos National Laboratory. Archived from the original on 2016-03-03. Retrieved 2006-05-31.
  • ^ Merritt, D.; Sellwood, J. (1994), "Bending Instabilities of Stellar Systems", The Astrophysical Journal, 425: 551–567, Bibcode:1994ApJ...425..551M, doi:10.1086/174005
  • ^ Roupas, Zacharias (January 2019), "The Gravothermal Instability at All Scales: From Turnaround Radius to Supernovae", Universe, 5 (1): 12, arXiv:1809.07568, Bibcode:2019Univ....5...12R, doi:10.3390/universe5010012
  • ^ Guskiewicz, K. M.; Perrin, David H. (1996). "Effect of Orthotics on Postural Sway Following Inversion Ankle Sprain". Journal of Orthopedic and Sports Physical Therapy. 23 (5): 326–331. doi:10.2519/jospt.1996.23.5.326. PMID 8728531.
  • ^ Pintsaar, A.; Brynhildsen, J.; Tropp, H. (1996). "Postural Corrections after Standardised Perturbations of Single Limb Stance: Effect of Training and Orthotic Devices in Patients with Ankle Instability". British Journal of Sports Medicine. 30 (2): 151–155. doi:10.1136/bjsm.30.2.151. PMC 1332381. PMID 8799602.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Instability&oldid=1235002819"

    Categories: 
    Systems theory
    Fluid mechanics
    Plasma phenomena
    Stability theory
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Wikipedia articles needing clarification from September 2015
    All articles with specifically marked weasel-worded phrases
    Articles with specifically marked weasel-worded phrases from December 2019
     



    This page was last edited on 17 July 2024, at 06:42 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki