Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Coronal and solar wind plasma  





2 Magnetic field at Earth orbit  





3 See also  





4 References  














Interplanetary magnetic field






العربية
Català
Čeština
Deutsch
Español
Français

Bahasa Indonesia
Italiano
Norsk bokmål
Português
Svenska
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The heliospheric current sheet is a three-dimensional form of a Parker spiral that results from the influence of the Sun's rotating magnetic field on the plasma in the interplanetary medium.[1]

The interplanetary magnetic field (IMF), now more commonly referred to as the heliospheric magnetic field (HMF),[2] is the component of the solar magnetic field that is dragged out from the solar corona by the solar wind flow to fill the Solar System.

Coronal and solar wind plasma[edit]

The coronal and solar wind plasmas are highly electrically conductive, meaning the magnetic field lines and the plasma flows are effectively "frozen" together[3] and the magnetic field cannot diffuse through the plasma on time scales of interest. In the solar corona, the magnetic pressure greatly exceeds the plasma pressure and thus the plasma is primarily structured and confined by the magnetic field. However, with increasing altitude through the corona, the solar wind accelerates as it extracts energy from the magnetic field through the Lorentz force interaction, resulting in the flow momentum exceeding the restraining magnetic tension force and the coronal magnetic field is dragged out by the solar wind to form the HMF.

The dynamic pressure of the wind dominates over the magnetic pressure through most of the Solar System (orheliosphere), so that the magnetic field is pulled into an Archimedean spiral pattern (the Parker spiral[4]) by the combination of the outward motion and the Sun's rotation. In near-Earth space, the HMF nominally makes an angle of approximately 45° to the Earth–Sun line, though this angle varies with solar wind speed. The angle of the HMF to the radial direction reduces with helio-latitude, as the speed of the photospheric footpoint is reduced.

Depending on the polarity of the photospheric footpoint, the heliospheric magnetic field spirals inward or outward; the magnetic field follows the same shape of spiral in the northern and southern parts of the heliosphere, but with opposite field direction. These two magnetic domains are separated by a two current sheet (anelectric current that is confined to a curved plane). This heliospheric current sheet has a shape similar to a twirled ballerina skirt, and changes in shape through the solar cycle as the Sun's magnetic field reverses about every 11 years.

Magnetic field at Earth orbit[edit]

A video simulation of Earth's magnetic field interacting with the (solar) interplanetary magnetic field (IMF)

The plasma in the interplanetary medium is also responsible for the strength of the Sun's magnetic field at the orbit of the Earth being over 100 times greater than originally anticipated. If space were a vacuum, then the Sun's magnetic dipole field — about 10−4 teslas at the surface of the Sun — would reduce with the inverse cube of the distance to about 10−11 teslas. But satellite observations show that it is about 100 times greater at around 10−9 teslas. Magnetohydrodynamic (MHD) theory predicts that the motion of a conducting fluid (e.g., the interplanetary medium) in a magnetic field induces electric currents, which in turn generates magnetic fields — and, in this respect, it behaves like an MHD dynamo.

The interplanetary magnetic field at the Earth's orbit varies with waves and other disturbances in the solar wind, known as "space weather." The field is a vector, with components in the radial and azimuthal directions as well as a component perpendicular to the ecliptic. The field varies in strength near the Earth from 1 to 37 nT, averaging about 6 nT.[5] Since 1997, the solar magnetic field has been monitored in real time by the Advanced Composition Explorer (ACE) satellite located in a halo orbit at the Sun–Earth Lagrange Point L1; since July 2016, it has been monitored by the Deep Space Climate Observatory (DSCOVR) satellite, and also at Sun–Earth L1 (with the ACE continuing to serve as a back-up measurement).[6]

See also[edit]

References[edit]

  1. ^ helio.gif (350×273) (Image).
  • ^ Owens, Mathew J.; Forsyth, Robert J. (2013-11-28). "The Heliospheric Magnetic Field". Living Reviews in Solar Physics. 10 (1): 5. arXiv:1002.2934. Bibcode:2013LRSP...10....5O. doi:10.12942/lrsp-2013-5. ISSN 2367-3648. S2CID 122870891.
  • ^ Roberts, Paul H. (2007), "Alfvén's Theorem and the Frozen Flux Approximation", in Gubbins, David; Herrero-Bervera, Emilio (eds.), Encyclopedia of Geomagnetism and Paleomagnetism, Springer Netherlands, pp. 7–11, doi:10.1007/978-1-4020-4423-6_5, ISBN 9781402044236
  • ^ Parker, E. N., "Dynamics of the Interplanetary Gas and Magnetic Fields", (1958) Astrophysical Journal, vol. 128, p.664
  • ^ Glossary, interplanetary magnetic field (IMF) Archived 2012-04-29 at the Wayback Machine, Southwest Research Institute. Retrieved 11 February 2020.
  • ^ The Interplanetary Magnetic Field (IMF), Space Weather Live. Retrieved 11 February 2020.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Interplanetary_magnetic_field&oldid=1230352409"

    Categories: 
    Solar System
    Outer space
    Magnetism in astronomy
    Hidden categories: 
    Webarchive template wayback links
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from December 2016
    All articles needing additional references
    Commons category link is on Wikidata
     



    This page was last edited on 22 June 2024, at 07:02 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki