Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Background  





2 Methodology  





3 See also  





4 References  














Intratracheal instillation






Српски / srpski
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Intratracheal instillation is the introduction of a substance directly into the trachea. It is widely used to test the respiratory toxicity of a substance as an alternative to inhalationinanimal testing.[1] Intratracheal instillation was reported as early as 1923 in studies of the carcinogenicityofcoal tar. Modern methodology was developed by several research groups in the 1970s.[1] By contrast, tracheal administration of pharmaceutical drugs in humans is called endotracheal administration.[2]

Background

[edit]

As compared to inhalation, intratracheal instillation allows greater control over the dose and location of the substance, is cheaper and less technically demanding, allows lower amounts of scarce or expensive substances to be used, allows substances to be tested that can be inhaled by humans but not small mammals, and minimizes exposure to laboratory workers and to the skin of laboratory animals. Disadvantages include its nonphysiological and invasive nature, the confounding effects of the delivery vehicle and anesthesia, and the fact that it bypasses the upper respiratory tract. Instillation results in a less uniform distribution of the substance than inhalation, and the substance is cleared from the respiratory tract more slowly.[1] Their results provide a quick screen of potential toxicity and can be used to test its mechanism, but may not be directly applicable to occupational exposure that occurs over an extended period.[3] Some of these difficulties are overcome by another method, pharyngeal aspiration, which is less technically difficult and causes less trauma to the animal,[4] and has a pulmonary deposition pattern more similar to inhalation.[5]

Methodology

[edit]

Intratracheal instillation is often performed with mice, rats, or hamsters, with hamsters often preferred because their mouth can be opened widely to aid viewing the procedure,[6] and because they are more resistant to lung diseases than rats.[7] Instillation is performed either through inserting a needle or catheter down the mouth and throat, or through surgically exposing the trachea and penetrating it with a needle. Generally, short-acting inhaled anesthetic drugs such as halothane, metaphane, or enflurane are used during the instillation procedure. Saline solution is usually used as a delivery vehicle in a typical volume of 1–2 mL/kg body weight.[1] A wide range of substances can be tested, including both soluble materials and insoluble particles or fibers, including nanomaterials.[1][3][5]

See also

[edit]

References

[edit]
  1. ^ a b c d e Driscoll, Kevin E.; Costa, Daniel L.; Hatch, Gary; Henderson, Rogene; Oberdorster, Gunter; Salem, Harry; Schlesinger, Richard B. (2000-05-01). "Intratracheal Instillation as an Exposure Technique for the Evaluation of Respiratory Tract Toxicity: Uses and Limitations". Toxicological Sciences. 55 (1): 24–35. doi:10.1093/toxsci/55.1.24. ISSN 1096-6080. PMID 10788556.
  • ^ "CALS Manual: Endotracheal Drug Delivery". Comprehensive Advanced Life Support Rural Emergency Medical Education. 2011-10-13. Retrieved 2017-02-20.
  • ^ a b "Occupational Exposure to Refractory Ceramic Fibers". U.S. National Institute for Occupational Safety and Health. May 2006. pp. 38–39, 42, 89. Retrieved 2017-02-17.
  • ^ Rao, G. V. S.; Tinkle, Sally; Weissman, David; Antonini, James; Kashon, Michael; Salmen, Rebecca; Battelli, Lori; Willard, Patsy; Hubbs, Ann (2003-01-01). "Efficacy of a Technique for Exposing the Mouse Lung to Particles Aspirated from the Pharynx". Journal of Toxicology and Environmental Health, Part A. 66 (15–16): 1441–1452. doi:10.1080/15287390306417. ISSN 1528-7394. PMID 12857634. S2CID 38171132. Retrieved 2017-03-01.
  • ^ a b "Occupational Exposure to Carbon Nanotubes and Nanofibers". U.S. National Institute for Occupational Safety and Health. April 2013. pp. 15–17, 48. Retrieved 2017-02-17.
  • ^ Zhao, Yuliang (2016-12-12). Toxicology of Nanomaterials. John Wiley & Sons. p. 163. ISBN 9783527337972.
  • ^ Schiller, Erich (2013-06-29). Free Radicals and Inhalation Pathology. Springer Science & Business Media. p. 63. ISBN 9783642186196.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Intratracheal_instillation&oldid=994333578"

    Categories: 
    Occupational safety and health
    Toxicology
    Trachea
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 15 December 2020, at 04:38 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki