Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Theory  





2 Modes  



2.1  Isochromat mode  





2.2  Spectrograph mode  





2.3  Comparison of modes  







3 See also  





4 References  





5 Further reading  














Inverse photoemission spectroscopy






Deutsch
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inverse photoemission spectroscopy (IPES) is a surface science technique used to study the unoccupied electronic structure of surfaces, thin films, and adsorbates. A well-collimated beam of electrons of a well defined energy (< 20 eV) is directed at the sample. These electrons couple to high-lying unoccupied electronic states and decay to low-lying unoccupied states, with a subset of these transitions being radiative. The photons emitted in the decay process are detected and an energy spectrum, photon counts vs. incident electron energy, is generated. Due to the low energy of the incident electrons, their penetration depth is only a few atomic layers, making inverse photoemission a particularly surface sensitive technique. As inverse photoemission probes the electronic states above the Fermi level of the system, it is a complementary technique to photoemission spectroscopy.

Theory[edit]

The energyofphotons (, which includes Planck's constant) emitted when electrons incident on a substance using an electron beam with a constant energy () relax to a lower energy unoccupied state () is given by the conservation of energy as:

By measuring and , the unoccupied state () of the surface can be found.

Modes[edit]

Two modes can be used for this measurement. One is the isochromat mode, which scans the incident electron energy and keeps the detected photon energy constant. The other is the tunable photon energy mode, or spectrograph mode, which keeps the incident electron energy constant and measures the distribution of the detected photon energy. The latter can also measure the resonant inverse photoemission spectroscopy.

Isochromat mode[edit]

In isochromat mode, the incident electron energy is ramped and the emitted photons are detected at a fixed energy that is determined by the photon detector. Typically, an I2 gas filled Geiger-Müller tube with an entrance window of either SrF2orCaF2 is used as the photon detector. The combination of window and filling gas determines the detected photon energy, and for I2 gas and either a SrF2 or CaF2 window, the photons energies are ~ 9.5 eV and ~ 9.7 eV, respectively.

Spectrograph mode[edit]

In spectrograph mode, the energy of the incident electron remains fixed and a grating spectrometer is used to the detect the emitted photons over a range of photon energies. A diffraction grating is used to disperse the emitted photons that are in turn detected with a two-dimensional position sensitive detector.

Comparison of modes[edit]

One advantage of spectrograph mode is the ability to acquire IPES spectra over a wide range of photon energies simultaneously. Additionally, the incident electron energy remains fixed which allows better focusing of the electron beam on the sample. Furthermore, by changing the incident electron energy the electronic structure can be studied in great detail. Although the grating spectrometer is very stable over time, the set-up can be very complex and its maintenance can be very expensive. The advantages of isochromat mode are its low cost, simple design and higher count rates.[1]

See also[edit]

References[edit]

  1. ^ Haugan, M. E.; Chen, Qibiao; Onellion, M.; Himpsel, F. J. (1994-05-15). "Unoccupied states of Cr on Au(100), Ag(100), and Cu(100)". Physical Review B. 49 (19): 14028–14031. Bibcode:1994PhRvB..4914028H. doi:10.1103/PhysRevB.49.14028. PMID 10010360.

Further reading[edit]

  • Binnig, G.; Frank, K. H.; Fuchs, H.; Garcia, N.; Reihl, B.; Rohrer, H.; Salvan, F.; Williams, A. R. (1985). "Tunneling Spectroscopy and Inverse Photoemission: Image and Field States". Physical Review Letters. 55 (9): 991–994. Bibcode:1985PhRvL..55..991B. doi:10.1103/PhysRevLett.55.991. ISSN 0031-9007. PMID 10032502.
  • Fauster, Th.; Dose, V. (1986). "Inverse Photoemission Spectroscopy". Chemistry and Physics of Solid Surfaces VI. Springer Series in Surface Sciences. Vol. 5. pp. 483–507. doi:10.1007/978-3-642-82727-3_18. ISBN 978-3-642-82729-7. ISSN 0931-5195.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Inverse_photoemission_spectroscopy&oldid=1030760431"

    Categories: 
    Emission spectroscopy
    Surface science
    Electron spectroscopy
    Hidden categories: 
    Articles needing additional references from February 2008
    All articles needing additional references
     



    This page was last edited on 27 June 2021, at 21:57 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki