Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 List of isotopes  





2 Iron-54  





3 Iron-56  





4 Iron-57  





5 Iron-58  





6 Iron-60  





7 References  





8 Further reading  














Isotopes of iron






العربية
Català
Чӑвашла
Čeština
Español
Esperanto
فارسی
Français

Hrvatski
Bahasa Indonesia
Magyar
Македонски
Nederlands

Português
Русский
Српски / srpski
Srpskohrvatski / српскохрватски
Українська



 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Iron-54)

Isotopesofiron (26Fe)

Main isotopes[1]

Decay

abun­dance

half-life (t1/2)

mode

pro­duct

54Fe

5.85%

stable

55Fe

synth

2.73 y

ε

55Mn

56Fe

91.8%

stable

57Fe

2.12%

stable

58Fe

0.28%

stable

59Fe

synth

44.6 d

β

59Co

60Fe

trace

2.6×106 y

β

60Co

Standard atomic weight Ar°(Fe)

  • 55.845±0.002[2]
  • 55.845±0.002 (abridged)[3]
  • talk
  • edit
  • Naturally occurring iron (26Fe) consists of four stable isotopes: 5.845% of 54Fe (possibly radioactive with a half-life over 4.4×1020 years),[4] 91.754% of 56Fe, 2.119% of 57Fe and 0.286% of 58Fe. There are 24 known radioactive isotopes, the most stable of which are 60Fe (half-life 2.6 million years) and 55Fe (half-life 2.7 years).

    Much of the past work on measuring the isotopic composition of iron has centered on determining 60Fe variations due to processes accompanying nucleosynthesis (i.e., meteorite studies) and ore formation. In the last decade however, advances in mass spectrometry technology have allowed the detection and quantification of minute, naturally occurring variations in the ratios of the stable isotopes of iron. Much of this work has been driven by the Earth and planetary science communities, although applications to biological and industrial systems are beginning to emerge.[5]

    List of isotopes[edit]

    Nuclide
    [n 1]

    Z

    N

    Isotopic mass (Da)
    [n 2][n 3]

    Half-life
    [n 4]

    Decay
    mode

    [n 5]

    Daughter
    isotope

    [n 6]

    Spin and
    parity
    [n 7][n 4]

    Natural abundance (mole fraction)

    Excitation energy

    Normal proportion

    Range of variation

    45Fe

    26

    19

    45.01458(24)#

    1.89(49ms

    β+ (30%)

    45Mn

    3/2+#

    2p (70%)

    43Cr

    46Fe

    26

    20

    46.00081(38)#

    9(4ms
    [12(+4-3) ms]

    β+ (>99.9%)

    46Mn

    0+

    β+, p (<.1%)

    45Cr

    47Fe

    26

    21

    46.99289(28)#

    21.8(7ms

    β+ (>99.9%)

    47Mn

    7/2−#

    β+, p (<.1%)

    46Cr

    48Fe

    26

    22

    47.98050(8)#

    44(7ms

    β+ (96.41%)

    48Mn

    0+

    β+, p (3.59%)

    47Cr

    49Fe

    26

    23

    48.97361(16)#

    70(3ms

    β+, p (52%)

    48Cr

    (7/2−)

    β+ (48%)

    49Mn

    50Fe

    26

    24

    49.96299(6)

    155(11ms

    β+ (>99.9%)

    50Mn

    0+

    β+, p (<.1%)

    49Cr

    51Fe

    26

    25

    50.956820(16)

    305(5ms

    β+

    51Mn

    5/2−

    52Fe

    26

    26

    51.948114(7)

    8.275(8h

    β+

    52mMn

    0+

    52mFe

    6.81(13) MeV

    45.9(6s

    β+

    52Mn

    (12+)#

    53Fe

    26

    27

    52.9453079(19)

    8.51(2) min

    β+

    53Mn

    7/2−

    53mFe

    3040.4(3) keV

    2.526(24) min

    IT

    53Fe

    19/2−

    54Fe

    26

    28

    53.9396090(5)

    Observationally Stable[n 8]

    0+

    0.05845(35)

    0.05837–0.05861

    54mFe

    6526.9(6) keV

    364(7ns

    10+

    55Fe

    26

    29

    54.9382934(7)

    2.737(11y

    EC

    55Mn

    3/2−

    56Fe[n 9]

    26

    30

    55.9349363(5)

    Stable

    0+

    0.91754(36)

    0.91742–0.91760

    57Fe

    26

    31

    56.9353928(5)

    Stable

    1/2−

    0.02119(10)

    0.02116–0.02121

    58Fe

    26

    32

    57.9332744(5)

    Stable

    0+

    0.00282(4)

    0.00281–0.00282

    59Fe

    26

    33

    58.9348755(8)

    44.495(9d

    β

    59Co

    3/2−

    60Fe

    26

    34

    59.934072(4)

    2.6×106 y

    β

    60Co

    0+

    trace

    61Fe

    26

    35

    60.936745(21)

    5.98(6) min

    β

    61Co

    3/2−,5/2−

    61mFe

    861(3) keV

    250(10ns

    9/2+#

    62Fe

    26

    36

    61.936767(16)

    68(2s

    β

    62Co

    0+

    63Fe

    26

    37

    62.94037(18)

    6.1(6s

    β

    63Co

    (5/2)−

    64Fe

    26

    38

    63.9412(3)

    2.0(2s

    β

    64Co

    0+

    65Fe

    26

    39

    64.94538(26)

    1.3(3s

    β

    65Co

    1/2−#

    65mFe

    364(3) keV

    430(130) ns

    (5/2−)

    66Fe

    26

    40

    65.94678(32)

    440(40ms

    β (>99.9%)

    66Co

    0+

    β, n (<.1%)

    65Co

    67Fe

    26

    41

    66.95095(45)

    394(9ms

    β (>99.9%)

    67Co

    1/2−#

    β, n (<.1%)

    66Co

    67mFe

    367(3) keV

    64(17μs

    (5/2−)

    68Fe

    26

    42

    67.95370(75)

    187(6ms

    β (>99.9%)

    68Co

    0+

    β, n

    67Co

    69Fe

    26

    43

    68.95878(54)#

    109(9ms

    β (>99.9%)

    69Co

    1/2−#

    β, n (<.1%)

    68Co

    70Fe

    26

    44

    69.96146(64)#

    94(17ms

    0+

    71Fe

    26

    45

    70.96672(86)#

    30# ms
    [>300 ns]

    7/2+#

    72Fe

    26

    46

    71.96962(86)#

    10# ms
    [>300 ns]

    0+

    This table header & footer:
    1. ^ mFe – Excited nuclear isomer.
  • ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  • ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  • ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  • ^ Modes of decay:

    IT:

    Isomeric transition

    n:

    Neutron emission

    p:

    Proton emission

  • ^ Bold symbol as daughter – Daughter product is stable.
  • ^ ( ) spin value – Indicates spin with weak assignment arguments.
  • ^ Believed to decay by β+β+to54Cr with a half-life of over 4.4×1020 a[4]
  • ^ Lowest mass per nucleon of all nuclides; End product of stellar nucleosynthesis
  • Iron-54[edit]

    54Fe is observationally stable, but theoretically can decay to 54Cr, with a half-life of more than 4.4×1020 years via double electron capture (εε).[4]

    Iron-56[edit]

    56Fe is the most abundant isotope of iron. It is also the isotope with the lowest mass per nucleon, 930.412 MeV/c2, though not the isotope with the highest nuclear binding energy per nucleon, which is nickel-62.[7] However, because of the details of how nucleosynthesis works, 56Fe is a more common endpoint of fusion chains inside supernovae, where it is mostly produced as 56Ni. Thus, 56Ni is more common in the universe, relative to other metals, including 62Ni, 58Fe and 60Ni, all of which have a very high binding energy.

    The high nuclear binding energy for 56Fe represents the point where further nuclear reactions become energetically unfavorable. Because of this, it is among the heaviest elements formed in stellar nucleosynthesis reactions in massive stars. These reactions fuse lighter elements like magnesium, silicon, and sulfur to form heavier elements. Among the heavier elements formed is 56Ni, which subsequently decays to 56Co and then 56Fe.

    Iron-57[edit]

    57Fe is widely used in Mössbauer spectroscopy and the related nuclear resonance vibrational spectroscopy due to the low natural variation in energy of the 14.4 keV nuclear transition.[8] The transition was famously used to make the first definitive measurement of gravitational redshift, in the 1960 Pound–Rebka experiment.[9]

    Iron-58[edit]

    Iron-58 can be used to combat anemia and low iron absorption, to metabolically track iron-controlling human genes, and for tracing elements in nature.[10][11] Iron-58 is also an assisting reagent in the synthesis of superheavy elements.[11]

    Iron-60[edit]

    Iron-60 is an iron isotope with a half-life of 2.6 million years,[12][13] but was thought until 2009 to have a half-life of 1.5 million years. It undergoes beta decaytocobalt-60, which then decays with a half-life of about 5 years to stable nickel-60. Traces of iron-60 have been found in lunar samples.

    In phases of the meteorites Semarkona and Chervony Kut, a correlation between the concentration of 60Ni, the granddaughter isotopeof60Fe, and the abundance of the stable iron isotopes could be found, which is evidence for the existence of 60Fe at the time of formation of the Solar System. Possibly the energy released by the decay of 60Fe contributed, together with the energy released by decay of the radionuclide 26Al, to the remelting and differentiationofasteroids after their formation 4.6 billion years ago. The abundance of 60Ni present in extraterrestrial material may also provide further insight into the origin of the Solar System and its early history.

    Iron-60 found in fossilised bacteria in sea floor sediments suggest there was a supernova in the vicinity of the Solar System approximately 2 million years ago.[14][15] Iron-60 is also found in sediments from 8 million years ago.[16] In 2019, researchers found interstellar 60Fe in Antarctica, which they relate to the Local Interstellar Cloud.[17]

    The distance to the supernova of origin can be estimated by relating the amount of iron-60 intercepted as Earth passes through the expanding supernova ejecta. Assuming that the material ejected in a supernova expands uniformly out from its origin as a sphere with a surface area of 4πr2. The fraction of the material intercepted by the Earth is dependent on its cross-sectional area (πR2earth) as it passes through the expanding debris. Where Mej is the mass of ejected material.Assuming the intercepted material is distributed uniformly across the surface of the Earth (4πR2earth), the mass surface density (Σej) of the supernova ejecta on Earth is: The number of 60Fe atoms per unit area found on Earth can be estimated if the typical amount of 60Fe ejected from a supernova is known. This can be done by dividing the surface mass density (Σej) by the atomic mass of 60Fe. The equation for N60 can be rearranged to find the distance to the supernova.An example calculation for the distance to the supernova point of origin is given below. This calculation uses speculative values for terrestrial 60Fe atom surface density (N60 ≈ 4 × 1011 atoms2/m) and a rough estimate of the mass of 60Fe ejected in a supernova explosion (10-5M). More sophisticated analyses have been reported that take into consideration the flux and deposition of 60Fe as well as possible interfering background sources.[18]

    Cobalt-60, the decay product of iron-60, emits 1.173 MeV and 1.333 MeV as it decays. These gamma-ray lines have long been important targets for gamma-ray astronomy, and have been detected by the gamma-ray observatory INTEGRAL. The signal traces the Galactic plane, showing that 60Fe synthesis is ongoing in our Galaxy, and probing element production in massive stars.[19][20]

    References[edit]

    1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  • ^ "Standard Atomic Weights: Iron". CIAAW. 1993.
  • ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  • ^ a b c Bikit, I.; Krmar, M.; Slivka, J.; Vesković, M.; Čonkić, Lj.; Aničin, I. (1998). "New results on the double β decay of iron". Physical Review C. 58 (4): 2566–2567. Bibcode:1998PhRvC..58.2566B. doi:10.1103/PhysRevC.58.2566.
  • ^ N. Dauphas; O. Rouxel (2006). "Mass spectrometry and natural variations of iron isotopes". Mass Spectrometry Reviews. 25 (4): 515–550. Bibcode:2006MSRv...25..515D. doi:10.1002/mas.20078. PMID 16463281.
  • ^ Wang, M.; Audi, G.; Wapstra, A.H.; Kondev, F.G.; MacCormick, M.; Xu, X.; Pfeiffer, B. (2012). "The Ame2012 atomic mass evaluation". Chinese Physics C. 36 (12): 1603–2014. Bibcode:2012ChPhC..36....3M. doi:10.1088/1674-1137/36/12/003. hdl:11858/00-001M-0000-0010-23E8-5. S2CID 250839471.
  • ^ Fewell, M. P. (1995). "The atomic nuclide with the highest mean binding energy". American Journal of Physics. 63 (7): 653. Bibcode:1995AmJPh..63..653F. doi:10.1119/1.17828.
  • ^ R. Nave. "Mossbauer Effect in Iron-57". HyperPhysics. Georgia State University. Retrieved 2009-10-13.
  • ^ Pound, R. V.; Rebka Jr. G. A. (April 1, 1960). "Apparent weight of photons". Physical Review Letters. 4 (7): 337–341. Bibcode:1960PhRvL...4..337P. doi:10.1103/PhysRevLett.4.337.
  • ^ "Iron-58 Metal Isotope". American Elements. Retrieved 2023-06-28.
  • ^ a b Vasiliev, Petr. "Iron-58, Iron-58 Isotope, Enriched Iron-58, Iron-58 Metal". www.buyisotope.com. Retrieved 2023-06-28.
  • ^ Rugel, G.; Faestermann, T.; Knie, K.; Korschinek, G.; Poutivtsev, M.; Schumann, D.; Kivel, N.; Günther-Leopold, I.; Weinreich, R.; Wohlmuther, M. (2009). "New Measurement of the 60Fe Half-Life". Physical Review Letters. 103 (7): 72502. Bibcode:2009PhRvL.103g2502R. doi:10.1103/PhysRevLett.103.072502. PMID 19792637.
  • ^ "Eisen mit langem Atem". scienceticker. 27 August 2009. Archived from the original on 3 February 2018. Retrieved 22 May 2010.
  • ^ Belinda Smith (Aug 9, 2016). "Ancient bacteria store signs of supernova smattering". Cosmos.
  • ^ Peter Ludwig; et al. (Aug 16, 2016). "Time-resolved 2-million-year-old supernova activity discovered in Earth's microfossil record". PNAS. 113 (33): 9232–9237. arXiv:1710.09573. Bibcode:2016PNAS..113.9232L. doi:10.1073/pnas.1601040113. PMC 4995991. PMID 27503888.
  • ^ Colin Barras (Oct 14, 2017). "Fires may have given our evolution a kick-start". New Scientist. 236 (3147): 7. Bibcode:2017NewSc.236....7B. doi:10.1016/S0262-4079(17)31997-8.
  • ^ Koll, Dominik; et., al. (2019). "Interstellar 60Fe in Antarctica". Physical Review Letters. 123 (7): 072701. Bibcode:2019PhRvL.123g2701K. doi:10.1103/PhysRevLett.123.072701. hdl:1885/298253. PMID 31491090. S2CID 201868513.
  • ^ Ertel, Adrienne F.; Fry, Brian J.; Fields, Brian D.; Ellis, John (20 April 2023). "Supernova Dust Evolution Probed by Deep-sea 60Fe Time History". The Astrophysical Journal. 947 (2): 58–83 – via The Institute of Physics (IOP).
  • ^ Harris, M. J.; Knödlseder, J.; Jean, P.; Cisana, E.; Diehl, R.; Lichti, G. G.; Roques, J. -P.; Schanne, S.; Weidenspointner, G. (2005-04-01). "Detection of γ-ray lines from interstellar 60Fe by the high resolution spectrometer SPI". Astronomy and Astrophysics. 433 (3): L49–L52. arXiv:astro-ph/0502219. Bibcode:2005A&A...433L..49H. doi:10.1051/0004-6361:200500093. ISSN 0004-6361.
  • ^ Wang, W.; Siegert, T.; Dai, Z. G.; Diehl, R.; Greiner, J.; Heger, A.; Krause, M.; Lang, M.; Pleintinger, M. M. M.; Zhang, X. L. (2020-02-01). "Gamma-Ray Emission of 60Fe and 26Al Radioactivity in Our Galaxy". The Astrophysical Journal. 889 (2): 169. arXiv:1912.07874. Bibcode:2020ApJ...889..169W. doi:10.3847/1538-4357/ab6336. ISSN 0004-637X.
  • Isotope masses from:

    Isotopic compositions and standard atomic masses from:

    Half-life, spin, and isomer data selected from:

    Further reading[edit]

     

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    Period

    Hydrogen and
    alkali metals

    Alkaline
    earth metals

    Pnicto­gens

    Chal­co­gens

    Halo­gens

    Noble gases

    Isotopes § List

    H

    1

    Isotopes § List

    He

    2

    Isotopes § List

    Li

    3

    Isotopes § List

    Be

    4

    Isotopes § List

    B

    5

    Isotopes § List

    C

    6

    Isotopes § List

    N

    7

    Isotopes § List

    O

    8

    Isotopes § List

    F

    9

    Isotopes § List

    Ne

    10

    Isotopes § List

    Na

    11

    Isotopes § List

    Mg

    12

    Isotopes § List

    Al

    13

    Isotopes § List

    Si

    14

    Isotopes § List

    P

    15

    Isotopes § List

    S

    16

    Isotopes § List

    Cl

    17

    Isotopes § List

    Ar

    18

    Isotopes § List

    K

    19

    Isotopes § List

    Ca

    20

    Isotopes § List

    Sc

    21

    Isotopes § List

    Ti

    22

    Isotopes § List

    V

    23

    Isotopes § List

    Cr

    24

    Isotopes § List

    Mn

    25

    Isotopes § List

    Fe

    26

    Isotopes § List

    Co

    27

    Isotopes § List

    Ni

    28

    Isotopes § List

    Cu

    29

    Isotopes § List

    Zn

    30

    Isotopes § List

    Ga

    31

    Isotopes § List

    Ge

    32

    Isotopes § List

    As

    33

    Isotopes § List

    Se

    34

    Isotopes § List

    Br

    35

    Isotopes § List

    Kr

    36

    Isotopes § List

    Rb

    37

    Isotopes § List

    Sr

    38

    Isotopes § List

    Y

    39

    Isotopes § List

    Zr

    40

    Isotopes § List

    Nb

    41

    Isotopes § List

    Mo

    42

    Isotopes § List

    Tc

    43

    Isotopes § List

    Ru

    44

    Isotopes § List

    Rh

    45

    Isotopes § List

    Pd

    46

    Isotopes § List

    Ag

    47

    Isotopes § List

    Cd

    48

    Isotopes § List

    In

    49

    Isotopes § List

    Sn

    50

    Isotopes § List

    Sb

    51

    Isotopes § List

    Te

    52

    Isotopes § List

    I

    53

    Isotopes § List

    Xe

    54

    Isotopes § List

    Cs

    55

    Isotopes § List

    Ba

    56

    1 asterisk

    Isotopes § List

    Lu

    71

    Isotopes § List

    Hf

    72

    Isotopes § List

    Ta

    73

    Isotopes § List

    W

    74

    Isotopes § List

    Re

    75

    Isotopes § List

    Os

    76

    Isotopes § List

    Ir

    77

    Isotopes § List

    Pt

    78

    Isotopes § List

    Au

    79

    Isotopes § List

    Hg

    80

    Isotopes § List

    Tl

    81

    Isotopes § List

    Pb

    82

    Isotopes § List

    Bi

    83

    Isotopes § List

    Po

    84

    Isotopes § List

    At

    85

    Isotopes § List

    Rn

    86

    Isotopes § List

    Fr

    87

    Isotopes § List

    Ra

    88

    1 asterisk

    Isotopes § List

    Lr

    103

    Isotopes § List

    Rf

    104

    Isotopes § List

    Db

    105

    Isotopes § List

    Sg

    106

    Isotopes § List

    Bh

    107

    Isotopes § List

    Hs

    108

    Isotopes § List

    Mt

    109

    Isotopes § List

    Ds

    110

    Isotopes § List

    Rg

    111

    Isotopes § List

    Cn

    112

    Isotopes § List

    Nh

    113

    Isotopes § List

    Fl

    114

    Isotopes § List

    Mc

    115

    Isotopes § List

    Lv

    116

    Isotopes § List

    Ts

    117

    Isotopes § List

    Og

    118

    Isotopes § List

    Uue

    119

    Isotopes § List

    Ubn

    120

    1 asterisk

    Isotopes § List

    La

    57

    Isotopes § List

    Ce

    58

    Isotopes § List

    Pr

    59

    Isotopes § List

    Nd

    60

    Isotopes § List

    Pm

    61

    Isotopes § List

    Sm

    62

    Isotopes § List

    Eu

    63

    Isotopes § List

    Gd

    64

    Isotopes § List

    Tb

    65

    Isotopes § List

    Dy

    66

    Isotopes § List

    Ho

    67

    Isotopes § List

    Er

    68

    Isotopes § List

    Tm

    69

    Isotopes § List

    Yb

    70

     

    1 asterisk

    Isotopes § List

    Ac

    89

    Isotopes § List

    Th

    90

    Isotopes § List

    Pa

    91

    Isotopes § List

    U

    92

    Isotopes § List

    Np

    93

    Isotopes § List

    Pu

    94

    Isotopes § List

    Am

    95

    Isotopes § List

    Cm

    96

    Isotopes § List

    Bk

    97

    Isotopes § List

    Cf

    98

    Isotopes § List

    Es

    99

    Isotopes § List

    Fm

    100

    Isotopes § List

    Md

    101

    Isotopes § List

    No

    102

  • Categories: Isotopes
  • Tables of nuclides
  • Metastable isotopes
  • Isotopes by element

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_iron&oldid=1228344575#Iron-54"

    Categories: 
    Isotopes of iron
    Iron
    Lists of isotopes by element
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 10 June 2024, at 18:56 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki