Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Reaction kinetics  





3 See also  





4 References  














Reversible reaction






العربية
 / Bân-lâm-gú
Беларуская
Català
Čeština
Dansk
Deutsch
Eesti
Español
فارسی
Français

Հայերեն
ि
Bahasa Indonesia
Italiano
Қазақша

Bahasa Melayu


Polski
Português
Română
Русский
Slovenčina
Slovenščina
کوردی
Српски / srpski
Srpskohrvatski / српскохрватски
Svenska
ி
Українська


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Irreversible reaction)

Areversible reaction is a reaction in which the conversion of reactants to products and the conversion of products to reactants occur simultaneously.[1]

A and B can react to form C and D or, in the reverse reaction, C and D can react to form A and B. This is distinct from a reversible processinthermodynamics.

Weak acids and bases undergo reversible reactions. For example, carbonic acid:

H2CO3 (l) + H2O(l) ⇌ HCO3(aq) + H3O+(aq).

The concentrations of reactants and products in an equilibrium mixture are determined by the analytical concentrations of the reagents (A and B or C and D) and the equilibrium constant, K. The magnitude of the equilibrium constant depends on the Gibbs free energy change for the reaction.[2] So, when the free energy change is large (more than about 30 kJ mol−1), the equilibrium constant is large (log K >3) and the concentrations of the reactants at equilibrium are very small. Such a reaction is sometimes considered to be an irreversible reaction, although small amounts of the reactants are still expected to be present in the reacting system. A truly irreversible chemical reaction is usually achieved when one of the products exits the reacting system, for example, as does carbon dioxide (volatile) in the reaction

CaCO3 + 2HCl → CaCl2 + H2O + CO2

History[edit]

The concept of a reversible reaction was introduced by Claude Louis Berthollet in 1803, after he had observed the formation of sodium carbonate crystals at the edge of a salt lake[3] (one of the natron lakes in Egypt, in limestone):

2NaCl + CaCO3 → Na2CO3 + CaCl2

He recognized this as the reverse of the familiar reaction

Na2CO3 + CaCl2→ 2NaCl + CaCO3

Until then, chemical reactions were thought to always proceed in one direction. Berthollet reasoned that the excess of salt in the lake helped push the "reverse" reaction towards the formation of sodium carbonate.[4]

In 1864, Peter Waage and Cato Maximilian Guldberg formulated their law of mass action which quantified Berthollet's observation. Between 1884 and 1888, Le Chatelier and Braun formulated Le Chatelier's principle, which extended the same idea to a more general statement on the effects of factors other than concentration on the position of the equilibrium.

Reaction kinetics[edit]

For the reversible reaction A⇌B, the forward step A→B has a rate constant and the backwards step B→A has a rate constant . The concentration of A obeys the following differential equation:

. (1)

If we consider that the concentration of product B at anytime is equal to the concentration of reactants at time zero minus the concentration of reactants at time , we can set up the following equation:

. (2)

Combining 1 and 2, we can write

.

Separation of variables is possible and using an initial value , we obtain:

and after some algebra we arrive at the final kinetic expression:

.

The concentration of A and B at infinite time has a behavior as follows:

Thus, the formula can be linearized in order to determine :

To find the individual constants and , the following formula is required:

See also[edit]

References[edit]

  1. ^ "Reversible Reaction". lumenlearning.com. Retrieved 2021-01-08.
  • ^ at constant pressure.
  • ^ How did Napoleon Bonaparte help discover reversible reactions?. Chem1 General Chemistry Virtual Textbook: Chemical Equilibrium Introduction: reactions that go both ways.
  • ^ Claude-Louis Berthollet,"Essai de statique chimique", Paris, 1803. (Google books)

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Reversible_reaction&oldid=1229172635"

    Categories: 
    Equilibrium chemistry
    Physical chemistry
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Pages that use a deprecated format of the chem tags
     



    This page was last edited on 15 June 2024, at 08:18 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki