Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Terminology in biochemical literature  





2 Anhydrous carbonic acid  





3 In aqueous solution  



3.1  In biological solutions  





3.2  Under high CO2 partial pressure  







4 Relationship to bicarbonate and carbonate  



4.1  Ocean acidification  







5 Further reading  





6 References  





7 External links  














Carbonic acid






Afrikaans
العربية
Azərbaycanca
تۆرکجه

 / Bân-lâm-gú
Беларуская (тарашкевіца)
Български
Bosanski
Brezhoneg
Català
Čeština
Dansk
Deutsch
Eesti
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français
Gaeilge

Հայերեն
ि
Hornjoserbsce
Hrvatski
Bahasa Indonesia
Íslenska
Italiano
עברית

Latina
Latviešu
Lëtzebuergesch
Lietuvių
Magyar
Македонски


Bahasa Melayu
 / Mìng-dĕ̤ng-nḡ

Nederlands

Norsk bokmål
Norsk nynorsk
Oʻzbekcha / ўзбекча
Plattdüütsch
Polski
Português
Română
Русский
Simple English
Slovenčina
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
ி

Türkçe
Українська
اردو
Vepsän kel
Tiếng Vit




 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 


















From Wikipedia, the free encyclopedia
 


Carbonic acid
Structural formula
Ball-and-stick model
Names
IUPAC name

Carbonic acid[1]

Other names
  • Oxidocarboxylic acid
  • Hydroxyformic acid
  • Hydroxymethanoic acid
  • Carbonylic acid
  • Hydroxycarboxylic acid
  • Dihydroxycarbonyl
  • Carbon dioxide solution
  • Aerial acid
  • Metacarbonic acid
  • Identifiers

    CAS Number

    3D model (JSmol)

    ChEBI
    ChEMBL
    ChemSpider
    DrugBank
    ECHA InfoCard 100.133.015 Edit this at Wikidata
    EC Number
    • 610-295-3

    Gmelin Reference

    25554
    KEGG

    PubChem CID

    UNII

    CompTox Dashboard (EPA)

    • InChI=1S/CH2O3/c2-1(3)4/h(H2,2,3,4) checkY

      Key: BVKZGUZCCUSVTD-UHFFFAOYSA-N checkY

    • InChI=1/H2O3/c2-1(3)4/h(H2,2,3,4)

      Key: BVKZGUZCCUSVTD-UHFFFAOYAU

    • O=C(O)O

    Properties

    Chemical formula

    H
    2
    CO
    3
    Appearance Colorless gas
    Melting point −53 °C (−63 °F; 220 K)[3] (sublimes)
    Boiling point 127 °C (261 °F; 400 K) (decomposes)

    Solubility in water

    Reacts to form carbon dioxide and water
    Acidity (pKa)
    • pKa1 = 3.75 (25 °C; anhydrous)[2]
  • pKa1 = 6.35 (hydrous)[2]
  • pKa2 = 10.33[2]
  • Conjugate base Bicarbonate, carbonate
    Hazards
    NFPA 704 (fire diamond)
    NFPA 704 four-colored diamondHealth 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g. sodium chlorideFlammability 0: Will not burn. E.g. waterInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
    0
    0
    1
    Structure

    Crystal structure

    monoclinic

    Space group

    p21/c, No. 14

    Point group

    -

    Lattice constant

    a = 5.392 Å, b = 6.661 Å, c = 5.690 Å

    α = 90°, β = 92.66°, γ = 90°[4]

    (D
    2
    CO
    3
    at 1.85 GPa, 298 K)

    Lattice volume (V)

    204.12 Å3

    Formula units (Z)

    4 formula per cell

    Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    checkY verify (what is checkY☒N ?)

    Infobox references

    Carbonic acid is a chemical compound with the chemical formula H2CO3. The molecule rapidly converts to water and carbon dioxide in the presence of water. However, in the absence of water, it is quite stable at room temperature.[5][6] The interconversion of carbon dioxide and carbonic acid is related to the breathing cycle of animals and the acidification of natural waters.[4]

    In biochemistry and physiology, the name "carbonic acid" is sometimes applied to aqueous solutionsofcarbon dioxide. These chemical species play an important role in the bicarbonate buffer system, used to maintain acid–base homeostasis.[7]

    Terminology in biochemical literature[edit]

    Inchemistry, the term "carbonic acid" strictly refers to the chemical compound with the formula H
    2
    CO
    3
    . Some biochemistry literature effaces the distinction between carbonic acid and carbon dioxide dissolved in extracellular fluid.

    Inphysiology, carbon dioxide excreted by the lungs may be called volatile acidorrespiratory acid.

    Anhydrous carbonic acid[edit]

    At ambient temperatures, pure carbonic acid is a stable gas.[6] There are two main methods to produce anhydrous carbonic acid: reaction of hydrogen chloride and potassium bicarbonateat100 Kinmethanol and proton irradiation of pure solid carbon dioxide.[3] Chemically, it behaves as a diprotic Brønsted acid.[8][9]

    Carbonic acid monomers exhibit three conformational isomers: cis–cis, cis–trans, and trans–trans.[10]

    At low temperatures and atmospheric pressure, solid carbonic acid is amorphous and lacks Bragg peaksinX-ray diffraction.[11] But at high pressure, carbonic acid crystallizes, and modern analytical spectroscopy can measure its geometry.

    According to neutron diffractionofdideuterated carbonic acid (D
    2
    CO
    3
    ) in a hybrid clamped cell (Russian alloy/copper-beryllium) at 1.85 GPa, the molecules are planar and form dimers joined by pairs of hydrogen bonds. All three C-O bonds are nearly equidistant at 1.34 Å, intermediate between typical C-O and C=O distances (respectively 1.43 and 1.23 Å). The unusual C-O bond lengths are attributed to delocalized π bonding in the molecule's center and extraordinarily strong hydrogen bonds. The same effects also induce a very short O—O separation (2.13 Å), through the 136° O-H-O angle imposed by the doubly hydrogen-bonded 8-membered rings.[4] Longer O—O distances are observed in strong intramolecular hydrogen bonds, e.g. in oxalic acid, where the distances exceed 2.4 Å.[11]

    In aqueous solution[edit]

    In even a slight presence of water, carbonic acid dehydratestocarbon dioxide and water, which then catalyzes further decomposition.[6] For this reason, carbon dioxide can be considered the carbonic acid anhydride.

    The hydration equilibrium constant at 25 °C is [H
    2
    CO
    3
    ]/[CO2] ≈ 1.7×10−3
    in pure water[12] and ≈ 1.2×10−3inseawater.[13] Hence the majority of carbon dioxide at geophysical or biological air-water interfaces does not convert to carbonic acid, remaining dissolved CO2 gas. However, the uncatalyzed equilibrium is reached quite slowly: the rate constants are 0.039 s−1 for hydration and 23 s−1 for dehydration.

    In biological solutions[edit]

    In the presence of the enzyme carbonic anhydrase, equilibrium is instead reached rapidly, and the following reaction takes precedence:[14]

    When the created carbon dioxide exceeds its solubility, gas evolves and a third equilibrium

    must also be taken into consideration. The equilibrium constant for this reaction is defined by Henry's law.

    The two reactions can be combined for the equilibrium in solution:

    When Henry's law is used to calculate the denominator care is needed with regard to units since Henry's law constant can be commonly expressed with 8 different dimensionalities.[15]

    Under high CO2 partial pressure[edit]

    In the beverage industry, sparkling or "fizzy water" is usually referred to as carbonated water. It is made by dissolving carbon dioxide under a small positive pressure in water. Many soft drinks treated the same way effervesce.

    Significant amounts of molecular H
    2
    CO
    3
    exist in aqueous solutions subjected to pressures of multiple gigapascals (tens of thousands of atmospheres) in planetary interiors.[16][17] Pressures of 0.6–1.6 GPa at 100 K, and 0.75–1.75 GPa at 300 K are attained in the cores of large icy satellites such as Ganymede, Callisto, and Titan, where water and carbon dioxide are present. Pure carbonic acid, being denser, is expected to have sunk under the ice layers and separate them from the rocky cores of these moons.[18]

    Relationship to bicarbonate and carbonate[edit]

    Bjerrum plot of speciation for a hypothetical monoprotic acid: AH concentration as a function of the difference between pK and pH

    Carbonic acid is the formal Brønsted–Lowry conjugate acid of the bicarbonate anion, stable in alkaline solution. The protonation constants have been measured to great precision, but depend on overall ionic strength I. The two equilibria most easily measured are as follows:

    where brackets indicate the concentrationofspecie. At 25 °C, these equilibria empirically satisfy[19]
    Note that log(β1) decreases with increasing I, as does log(β2). In a solution absent other ions (e.g. I = 0), these curves imply the following stepwise dissociation constants:
    Direct values for these constants in the literature include pK1 = 6.35 and pK2 - pK1 = 3.49.[20]

    To interpret these numbers, note that two chemical species in an acid equilibrium are equiconcentrated when pK = pH. In particular, the extracellular fluid (cytosol) in biological systems exhibits pH ≈ 7.2, so that carbonic acid will be almost 50%-dissociated at equilibrium.

    Ocean acidification[edit]

    Carbonate speciation in seawater (ionic strength 0.7 mol/dm3). The expected change shown is due to the current anthropogenic increaseinatmospheric carbon dioxide concentration.

    The Bjerrum plot shows typical equilibrium concentrations, in solution, in seawater, of carbon dioxide and the various species derived from it, as a function of pH.[8][9] As human industrialization has increased the proportionofcarbon dioxide in Earth's atmosphere, the proportion of carbon dioxide dissolved in sea- and freshwater as carbonic acid is also expected to increase. This rise in dissolved acid is also expected to acidify those waters, generating a decrease in pH.[21][22] It has been estimated that the increase in dissolved carbon dioxide has already caused the ocean's average surface pH to decrease by about 0.1 from pre-industrial levels.

    Further reading[edit]

    References[edit]

    1. ^ "Front Matter". Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. pp. P001–4. doi:10.1039/9781849733069-FP001. ISBN 978-0-85404-182-4.
  • ^ a b c Perrin, D. D., ed. (1982) [1969]. Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution. IUPAC Chemical Data (2nd ed.). Oxford: Pergamon (published 1984). "Carbonic Acid, H2CO3" entry. ISBN 0-08-029214-3. LCCN 82-16524.
  • ^ a b W. Hage, K. R. Liedl; Liedl, E.; Hallbrucker, A; Mayer, E (1998). "Carbonic Acid in the Gas Phase and Its Astrophysical Relevance". Science. 279 (5355): 1332–5. Bibcode:1998Sci...279.1332H. doi:10.1126/science.279.5355.1332. PMID 9478889.
  • ^ a b c Benz, Sebastian; Chen, Da; Möller, Andreas; Hofmann, Michael; Schnieders, David; Dronskowski, Richard (September 2022). "The Crystal Structure of Carbonic Acid". Inorganics. 10 (9): 132. doi:10.3390/inorganics10090132. ISSN 2304-6740.
  • ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 310. ISBN 978-0-08-037941-8.
  • ^ a b c Loerting, Thomas; Tautermann, Christofer; Kroemer, Romano T.; Kohl, Ingrid; Hallbrucker, Andreas; Mayer, Erwin; Liedl, Klaus R.; Loerting, Thomas; Tautermann, Christofer; Kohl, Ingrid; Hallbrucker, Andreas; Erwin, Mayer; Liedl, Klaus R. (2000). "On the Surprising Kinetic Stability of Carbonic Acid (H2CO3)". Angewandte Chemie International Edition. 39 (5): 891–4. doi:10.1002/(SICI)1521-3773(20000303)39:5<891::AID-ANIE891>3.0.CO;2-E. PMID 10760883.
  • ^ Acid-Base Physiology 2.1 – Acid-Base Balance by Kerry Brandis.
  • ^ a b Pangotra, Dhananjai; Csepei, Lénárd-István; Roth, Arne; Ponce de León, Carlos; Sieber, Volker; Vieira, Luciana (2022). "Anodic production of hydrogen peroxide using commercial carbon materials". Applied Catalysis B: Environmental. 303: 120848. doi:10.1016/j.apcatb.2021.120848. S2CID 240250750.
  • ^ a b Andersen, C. B. (2002). "Understanding carbonate equilibria by measuring alkalinity in experimental and natural systems". Journal of Geoscience Education. 50 (4): 389–403. Bibcode:2002JGeEd..50..389A. doi:10.5408/1089-9995-50.4.389. S2CID 17094010.
  • ^ Loerting, Thomas; Bernard, Juergen (2010). "Aqueous Carbonic Acid (H2CO3)". ChemPhysChem (11): 2305–9. doi:10.1002/cphc.201000220.
  • ^ a b Winkel, Katrin; Hage, Wolfgang; Loerting, Thomas; Price, Sarah L.; Mayer, Erwin (2007). "Carbonic Acid: From Polyamorphism to Polymorphism". Journal of the American Chemical Society. 129 (45): 13863–71. doi:10.1021/ja073594f. PMID 17944463.
  • ^ Housecroft, C.E.; Sharpe, A.G. (2005). Inorganic Chemistry (2nd ed.). Prentice-Pearson-Hall. p. 368. ISBN 0-13-039913-2. OCLC 56834315.
  • ^ Soli, A. L.; R. H. Byrne (2002). "CO2 system hydration and dehydration kinetics and the equilibrium CO2/H2CO3 ratio in aqueous NaCl solution". Marine Chemistry. 78 (2–3): 65–73. doi:10.1016/S0304-4203(02)00010-5.
  • ^ Lindskog S (1997). "Structure and mechanism of carbonic anhydrase". Pharmacology & Therapeutics. 74 (1): 1–20. doi:10.1016/S0163-7258(96)00198-2. PMID 9336012.
  • ^ Sander, Rolf; Acree, William E.; Visscher, Alex De; Schwartz, Stephen E.; Wallington, Timothy J. (1 January 2022). "Henry's law constants (IUPAC Recommendations 2021)". Pure and Applied Chemistry. 94 (1): 71–85. doi:10.1515/pac-2020-0302. ISSN 1365-3075.
  • ^ Wang, Hongbo; Zeuschner, Janek; Eremets, Mikhail; Troyan, Ivan; Williams, Jonathon (27 January 2016). "Stable solid and aqueous H2CO3 from CO2 and H2O at high pressure and high temperature". Scientific Reports. 6 (1): 19902. Bibcode:2016NatSR...619902W. doi:10.1038/srep19902. PMC 4728613. PMID 26813580.
  • ^ Stolte, Nore; Pan, Ding (4 July 2019). "Large presence of carbonic acid in CO2-rich aqueous fluids under Earth's mantle conditions". The Journal of Physical Chemistry Letters. 10 (17): 5135–41. arXiv:1907.01833. doi:10.1021/acs.jpclett.9b01919. PMID 31411889. S2CID 195791860.
  • ^ G. Saleh; A. R. Oganov (2016). "Novel Stable Compounds in the C-H-O Ternary System at High Pressure". Scientific Reports. 6: 32486. Bibcode:2016NatSR...632486S. doi:10.1038/srep32486. PMC 5007508. PMID 27580525.
  • ^ IUPAC (2006). "Stability constants" (database).
  • ^ Pines, Dina; Ditkovich, Julia; Mukra, Tzach; Miller, Yifat; Kiefer, Philip M.; Daschakraborty, Snehasis; Hynes, James T.; Pines, Ehud (2016). "How Acidic Is Carbonic Acid?". J Phys Chem B. 120 (9): 2440–51. doi:10.1021/acs.jpcb.5b12428. PMC 5747581. PMID 26862781.
  • ^ Caldeira, K.; Wickett, M. E. (2003). "Anthropogenic carbon and ocean pH". Nature. 425 (6956): 365. Bibcode:2001AGUFMOS11C0385C. doi:10.1038/425365a. PMID 14508477. S2CID 4417880.
  • ^ Sabine, C. L. (2004). "The Oceanic Sink for Anthropogenic CO2". Science. 305 (5682): 367–371. Bibcode:2004Sci...305..367S. doi:10.1126/science.1097403. hdl:10261/52596. PMID 15256665. S2CID 5607281. Archived from the original on 6 July 2008. Retrieved 22 June 2021.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Carbonic_acid&oldid=1227249764"

    Categories: 
    Carbonates
    Carboxylic acids
    Inorganic carbon compounds
    Mineral acids
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Use dmy dates from March 2021
    ECHA InfoCard ID from Wikidata
    Articles containing unverified chemical infoboxes
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 4 June 2024, at 16:56 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki