Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Mathematical isochron  



1.1  An introductory example  





1.2  Accurate forecasting requires isochrons  







2 References  














Isochron







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


In the mathematical theory of dynamical systems, an isochron is a set of initial conditions for the system that all lead to the same long-term behaviour.[1][2]

Mathematical isochron[edit]

An introductory example[edit]

Consider the ordinary differential equation for a solution evolving in time:

This ordinary differential equation (ODE) needs two initial conditions at, say, time . Denote the initial conditionsby and where and are some parameters. The following argument shows that the isochrons for this system are here the straight lines .

The general solution of the above ODE is

Now, as time increases, , the exponential terms decays very quickly to zero (exponential decay). Thus all solutions of the ODE quickly approach . That is, all solutions with the same have the same long term evolution. The exponential decay of the term brings together a host of solutions to share the same long term evolution. Find the isochrons by answering which initial conditions have the same .

At the initial time we have and . Algebraically eliminate the immaterial constant from these two equations to deduce that all initial conditions have the same , hence the same long term evolution, and hence form an isochron.

Accurate forecasting requires isochrons[edit]

Let's turn to a more interesting application of the notion of isochrons. Isochrons arise when trying to forecast predictions from models of dynamical systems. Consider the toy system of two coupled ordinary differential equations

A marvellous mathematical trick is the normal form (mathematics) transformation.[3] Here the coordinate transformation near the origin

to new variables transforms the dynamics to the separated form

Hence, near the origin, decays to zero exponentially quickly as its equation is . So the long term evolution is determined solely by : the equation is the model.

Let us use the equation to predict the future. Given some initial values of the original variables: what initial value should we use for ? Answer: the that has the same long term evolution. In the normal form above, evolves independently of . So all initial conditions with the same , but different , have the same long term evolution. Fix and vary gives the curving isochrons in the plane. For example, very near the origin the isochrons of the above system are approximately the lines . Find which isochron the initial values lie on: that isochron is characterised by some ; the initial condition that gives the correct forecast from the model for all time is then .

You may find such normal form transformations for relatively simple systems of ordinary differential equations, both deterministic and stochastic, via an interactive web site.[1]

References[edit]

  1. ^ J. Guckenheimer, Isochrons and phaseless sets, J. Math. Biol., 1:259–273 (1975)
  • ^ S.M. Cox and A.J. Roberts, Initial conditions for models of dynamical systems, Physica D, 85:126–141 (1995)
  • ^ A.J. Roberts, Normal form transforms separate slow and fast modes in stochastic dynamical systems, Physica A: Statistical Mechanics and its Applications 387:12–38 (2008)

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Isochron&oldid=833123484"

    Category: 
    Dynamical systems
     



    This page was last edited on 29 March 2018, at 19:49 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki