Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Mathematical description  





2 Loitsianskii's invariant  





3 Decay of turbulence  





4 See also  





5 References  














KármánHowarth equation







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inisotropic turbulence the Kármán–Howarth equation (after Theodore von Kármán and Leslie Howarth 1938), which is derived from the Navier–Stokes equations, is used to describe the evolution of non-dimensional longitudinal autocorrelation.[1][2][3][4][5]

Mathematical description[edit]

Consider a two-point velocity correlation tensor for homogeneous turbulence

For isotropic turbulence, this correlation tensor can be expressed in terms of two scalar functions, using the invariant theory of full rotation group, first derived by Howard P. Robertson in 1940,[6]

where is the root mean square turbulent velocity and are turbulent velocity in all three directions. Here, is the longitudinal correlation and is the lateral correlation of velocity at two different points. From continuity equation, we have

Thus uniquely determines the two-point correlation function. Theodore von Kármán and Leslie Howarth derived the evolution equation for from Navier–Stokes equationas

where uniquely determines the triple correlation tensor

Loitsianskii's invariant[edit]

L.G. Loitsianskii derived an integral invariant for the decay of the turbulence by taking the fourth moment of the Kármán–Howarth equation in 1939,[7][8] i.e.,

If decays faster than as and also in this limit, if we assume that vanishes, we have the quantity,

which is invariant. Lev Landau and Evgeny Lifshitz showed that this invariant is equivalent to conservation of angular momentum.[9] However, Ian Proudman and W.H. Reid showed that this invariant does not hold always since is not in general zero, at least, in the initial period of the decay.[10][11] In 1967, Philip Saffman showed that this integral depends on the initial conditions and the integral can diverge under certain conditions.[12]

Decay of turbulence[edit]

For the viscosity dominated flows, during the decay of turbulence, the Kármán–Howarth equation reduces to a heat equation once the triple correlation tensor is neglected, i.e.,

With suitable boundary conditions, the solution to above equation is given by[13]

so that,

See also[edit]

References[edit]

  1. ^ De Karman, T., & Howarth, L. (1938). On the statistical theory of isotropic turbulence. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 164(917), 192–215.
  • ^ Monin, A. S., & Yaglom, A. M. (2013). Statistical fluid mechanics, volume II: Mechanics of turbulence (Vol. 2). Courier Corporation.
  • ^ Batchelor, G. K. (1953). The theory of homogeneous turbulence. Cambridge university press.
  • ^ Panchev, S. (2016). Random Functions and Turbulence: International Series of Monographs in Natural Philosophy (Vol. 32). Elsevier.
  • ^ Hinze, J. O. (1959). Turbulence, (1975). New York.
  • ^ Robertson, H. P. (1940, April). The invariant theory of isotropic turbulence. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 36, No. 2, pp. 209–223). Cambridge University Press.
  • ^ Loitsianskii, L. G. (1939) Einige Grundgesetze einer isotropen turbulenten Strömung. Arbeiten d. Zentr. Aero-Hydrdyn. Inst., 440.
  • ^ Landau, L. D., & Lifshitz, E. M. (1959). Fluid Mechanics Pergamon. New York, 61.
  • ^ Landau, L. D., & Lifshitz, E. M. (1987). Fluid mechanics. 1987. Course of Theoretical Physics.
  • ^ Proudman, I., & Reid, W. H. (1954). On the decay of a normally distributed and homogeneous turbulent velocity field. Phil. Trans. R. Soc. Lond. A, 247(926), 163-189.
  • ^ Batchelor, G. K., & Proudman, I. (1956) The large-scale structure of homogeneous turbulence. Phil. Trans. R. Soc. Lond. A, 248(949), 369-405.
  • ^ Saffman, P. G. (1967). The large-scale structure of homogeneous turbulence. Journal of Fluid Mechanics, 27(3), 581-593.
  • ^ Spiegel, E. A. (Ed.). (2010). The Theory of Turbulence: Subrahmanyan Chandrasekhar's 1954 Lectures (Vol. 810). Springer.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Kármán–Howarth_equation&oldid=1105039157"

    Categories: 
    Equations of fluid dynamics
    Fluid dynamics
    Turbulence
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 18 August 2022, at 06:04 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki