Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Halogenation of α,β-unsaturated ketones  





2 Applications in green chemistry  





3 References  














Ketone halogenation






Čeština
Español
فارسی
Македонски
Nederlands
Português
ி
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inorganic chemistry, α-keto halogenation is a special type of halogenation. The reaction may be carried out under either acidic or basic conditions in an aqueous medium with the corresponding elemental halogen. In this way, chloride, bromide, and iodide (but notably not fluoride) functionality can be inserted selectively in the alpha position of a ketone.

The position alpha to the carbonyl group (C=O) in a ketone is easily halogenated. This is due to its ability to form an enolate (C=C−O) in basic solution, or an enol (C=C−OH) in acidic solution. An example of alpha halogenation is the mono-brominationofacetone ((CH3)2C=O), carried out under either acidic or basic conditions, to give bromoacetone:

Acidic (in acetic acid):

Reaction mechanism for the bromination of acetone while in the presence of acetic acid
Reaction mechanism for the bromination of acetone while in the presence of acetic acid

Basic (in aqueous NaOH):

Reaction mechanism for the bromination of acetone while in the presence of aqueous NaOH
Reaction mechanism for the bromination of acetone while in the presence of aqueous NaOH

In acidic solution, usually only one alpha hydrogen is replaced by a halogen, as each successive halogenation is slower than the first. The halogen decreases the basicity of the carbonyl oxygen, thus making protonation less favorable. However, in basic solutions, successive halogenation is more rapid due to inductive electron withdrawal by the halogen. This makes the remaining hydrogens more acidic. In the case of methyl ketones, this reaction often occurs a third time to form a ketone trihalide, which can undergo rapid substitution with water to form a carboxylate (−C(=O)O) in what is known as the haloform reaction.[1]

The regioselectivity also differs: The halogenation of an unsymmetrical ketone in acid results in the more substituted alkyl group being halogenated. A second equivalent of halogen results in the halogenation of the other alkyl substituent (without the halogen). In contrast, in basic solutions, an unsymmetrical ketone halogenates at the less substituted alkyl group. Subsequent halogenation (which usually cannot be stopped by control of stoichiometry) occurs at the position which already has a halogen substituent, until all hydrogens have been replaced by halogen atoms. For methyl alkyl ketones (2-alkanones), the haloform reaction proceeds to give the carboxylic acid selectively.[2]

Halogenation of α,β-unsaturated ketones[edit]

Halogenation of α,β-unsaturated ketone[3]

On α,β-Unsaturated ketones or enones, it's possible to halogenate with iodine selectively on the more saturated alpha on the ketone selectively over the unsaturated side. Iodine is preferred due to it being more reactive than alkyl bromides which makes this reaction quite useful.[3] By using CuO in conjunction with I2, it is possible to achieve this reaction under relatively mild conditions. This reaction undergoes a very reactive enol mechanism, facilitated by the CuO, which allows for the selective addition of I2 on the saturated alpha carbon of the ketone.[4] However, the effectiveness of this reaction depends on the presence of aryl functional groups.

Applications in green chemistry[edit]

Alpha halogenated products are very useful compounds as they have high reactivity which makes them very prone to reacting. Alpha halogenated ketones react with nucleophiles to create many valuable compounds. However, many of the current method for ketone halogenation use hazardous chemicals, have complex procedures, and/or require a long time to go to completion. Additionally, the polar solvents that are primarily used (DMF, DMSO, and CH3CN) are major environmental pollutants.

An experiment conducted by Meshram et al. in 2005 investigated making ketone halogenation a greener reaction, according to the principles of green chemistry.[5][6] Meshram et al. investigated alternatives to the hazardous chemicals that are primarily used in ketone halogenation, finding that room temperature ionic liquids were a promising option.[6] Room temperature ionic liquids are interesting prospects as they have unique chemical and physical properties, and their properties can be modified by changing the cations that are attached. Additionally, these ionic liquids have high polarity and their ability to solubilize organic and inorganic molecules leads to enhanced reaction rates, which makes them more desirable.

Many experiments found that ionic liquids with N-halosuccinimides as the solvent were an effective, greener alternative to conventional solvents.[6] This process also resulted in enhanced yields, reduced reaction time, simplified the procedure, used less harmful chemicals (no strong acids), and did not require catalysts, all of which made the process greener.

References[edit]

  1. ^ "Organic Chemistry" Fifth Edition, by Paula Yurkanis Bruice. Pearson Prentice Hall, Upper Saddle River, NJ, 2007
  • ^ Clayden, Jonathan. (2012). Organic chemistry. Greeves, Nick., Warren, Stuart G. (2nd ed.). Oxford: Oxford University Press. ISBN 9780199270293. OCLC 761379371.
  • ^ a b Wang, Zihua; Yin, Guodong; Qin, Jing; Gao, Meng; Cao, Liping; Wu, Anxin (November 2008). "An Efficient Method for the Selective Iodination of α,β-Unsaturated Ketones". Synthesis. 2008 (22): 3675–3681. doi:10.1055/s-0028-1083200. ISSN 0039-7881.
  • ^ "Halogenation of Ketones via Enols". Master Organic Chemistry. Retrieved 13 November 2022.
  • ^ "12 Principles of Green Chemistry". American Chemical Society. Retrieved 13 November 2022.
  • ^ a b c Meshram, H. M.; Reddy, P. N.; Vishnu, P.; Sadashiv, K.; Yadav, J. S. (6 February 2006). "A green approach for efficient α-halogenation of β-dicarbonyl compounds and cyclic ketones using N-halosuccinimides in ionic liquids". Tetrahedron Letters. 47 (6): 991–995. doi:10.1016/j.tetlet.2005.11.141. ISSN 0040-4039.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Ketone_halogenation&oldid=1181840396"

    Category: 
    Halogenation reactions
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Use dmy dates from November 2022
     



    This page was last edited on 25 October 2023, at 15:08 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki