Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 See also  





2 References  





3 External links  














Knight's graph






עברית
Magyar
Русский
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Knight's graph
knight's graph
Vertices
Edges (if and )
Girth4 (if and )
Propertiesbipartite
Table of graphs and parameters

Ingraph theory, a knight's graph, or a knight's tour graph, is a graph that represents all legal moves of the knight chess piece on a chessboard. Each vertex of this graph represents a square of the chessboard, and each edge connects two squares that are a knight's move apart from each other. More specifically, an knight's graph is a knight's graph of an chessboard.[1] Its vertices can be represented as the points of the Euclidean plane whose Cartesian coordinates are integers with and (the points at the centers of the chessboard squares), and with two vertices connected by an edge when their Euclidean distanceis.

For an knight's graph, the number of vertices is . If and then the number of edges is (otherwise there are no edges). For an knight's graph, these simplify so that the number of vertices is and the number of edges is .[2]

AHamiltonian cycle on the knight's graph is a (closed) knight's tour.[1] A chessboard with an odd number of squares has no tour, because the knight's graph is a bipartite graph (each color of squares can be used as one of two independent sets, and knight moves always change square color) and only bipartite graphs with an even number of vertices can have Hamiltonian cycles. Most chessboards with an even number of squares have a knight's tour; Schwenk's theorem provides an exact listing of which ones do and which do not.[3]

When it is modified to have toroidal boundary conditions (meaning that a knight is not blocked by the edge of the board, but instead continues onto the opposite edge) the knight's graph is the same as the four-dimensional hypercube graph.[3]

See also[edit]

References[edit]

  1. ^ a b Averbach, Bonnie; Chein, Orin (1980), Problem Solving Through Recreational Mathematics, Dover, p. 195, ISBN 9780486131740.
  • ^ Sloane, N. J. A. (ed.). "Sequence A033996". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ a b Watkins, John J. (2004), Across the Board: The Mathematics of Chessboard Problems. Paradoxes, perplexities, and mathematical conundrums for the serious head scratcher, Princeton University Press, pp. 44, 68, ISBN 978-0-691-15498-5.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Knight%27s_graph&oldid=1170728422"

    Categories: 
    Mathematical chess problems
    Parametric families of graphs
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 16 August 2023, at 21:07 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki