Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Properties  





3 Solutions  





4 Modified KuramotoSivashinsky equation  



4.1  Dispersive KuramotoSivashinsky equations  





4.2  Sixth-order equations  







5 Applications  





6 See also  





7 References  





8 External links  














KuramotoSivashinsky equation







 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


A spatiotemporal plot of a simulation of the Kuramoto–Sivashinsky equation

Inmathematics, the Kuramoto–Sivashinsky equation (also called the KS equationorflame equation) is a fourth-order nonlinear partial differential equation. It is named after Yoshiki Kuramoto and Gregory Sivashinsky, who derived the equation in the late 1970s to model the diffusive–thermal instabilities in a laminar flame front.[1][2][3] The equation was independently derived by G. M. Homsy[4] and A. A. Nepomnyashchii[5] in 1974, in connection with the stability of liquid film on an inclined plane and by R. E. LaQuey et. al.[6] in 1975 in connection with trapped-ion instability. The Kuramoto–Sivashinsky equation is known for its chaotic behavior.[7][8]

Definition[edit]

The 1d version of the Kuramoto–Sivashinsky equation is

An alternate form is

obtained by differentiating with respect to and substituting . This is the form used in fluid dynamics applications.[9]

The Kuramoto–Sivashinsky equation can also be generalized to higher dimensions. In spatially periodic domains, one possibility is

where is the Laplace operator, and is the biharmonic operator.

Properties[edit]

The Cauchy problem for the 1d Kuramoto–Sivashinsky equation is well-posed in the sense of Hadamard—that is, for given initial data , there exists a unique solution that depends continuously on the initial data.[10]

The 1d Kuramoto–Sivashinsky equation possesses Galilean invariance—that is, if is a solution, then so is , where is an arbitrary constant.[11] Physically, since is a velocity, this change of variable describes a transformation into a frame that is moving with constant relative velocity . On a periodic domain, the equation also has a reflection symmetry: if is a solution, then is also a solution.[11]

Solutions[edit]

A converged relative periodic orbit for the KS equation with periodic boundary conditions for a domain size . After some time the system returns to its initial state, only translated slightly (~4 units) to the left. This particular solution has three unstable directions and three marginal directions.

Solutions of the Kuramoto–Sivashinsky equation possess rich dynamical characteristics.[11][12][13] Considered on a periodic domain , the dynamics undergoes a series of bifurcations as the domain size is increased, culminating in the onset of chaotic behavior. Depending on the value of , solutions may include equilibria, relative equilibria, and traveling waves—all of which typically become dynamically unstable as is increased. In particular, the transition to chaos occurs by a cascade of period-doubling bifurcations.[13]

Modified Kuramoto–Sivashinsky equation[edit]

Dispersive Kuramoto–Sivashinsky equations[edit]

A third-order derivative term represneting dispersion of wavenumbers are often encountered in many applications. The disperseively modified Kuramoto–Sivashinsky equation, which is often called as the Kawahara equation,[14] is given by[15]

where is real parameter. A fifth-order derivative term is also often included, which is the modified Kawahara equation and is given by[16]

Sixth-order equations[edit]

Three forms of the sixth-order Kuramoto–Sivashinsky equations are encountered in applications involving tricritical points, which are given by[17]

in which the last equation is referred to as the Nikolaevsky equation, named after V. N. Nikolaevsky who introudced the equation in 1989,[18][19][20] whereas the first two equations has been introduced recently in the context of transitions near tricritical points,[17] i.e., change in the sign of the fourth derivative term with the plus sign approaching a Kuramoto–Sivashinsky type and the minus sign approaching a Ginzburg–Landau type.

Applications[edit]

Applications of the Kuramoto–Sivashinsky equation extend beyond its original context of flame propagation and reaction–diffusion systems. These additional applications include flows in pipes and at interfaces, plasmas, chemical reaction dynamics, and models of ion-sputtered surfaces.[9][21]

See also[edit]

References[edit]

  1. ^ Kuramoto, Yoshiki (1978). "Diffusion-Induced Chaos in Reaction Systems". Progress of Theoretical Physics Supplement. 64: 346–367. doi:10.1143/PTPS.64.346. ISSN 0375-9687.
  • ^ Sivashinsky, G.I. (1977). "Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations". Acta Astronautica. 4 (11–12): 1177–1206. doi:10.1016/0094-5765(77)90096-0. ISSN 0094-5765.
  • ^ Sivashinsky, G. I. (1980). "On Flame Propagation Under Conditions of Stoichiometry". SIAM Journal on Applied Mathematics. 39 (1): 67–82. doi:10.1137/0139007. ISSN 0036-1399.
  • ^ Homsy, G. M. (1974). "Model equations for wavy viscous film flow". In Newell, A. (ed.). Nonlinear Wave Motion. Lectures in Applied Mathematics. Vol. 15. Providence: American Mathematical Society. pp. 191–194. Bibcode:1974LApM...15.....N.
  • ^ Nepomnyashchii, A. A. (1975). "Stability of wavy conditions in a film flowing down an inclined plane". Fluid Dynamics. 9 (3): 354–359. doi:10.1007/BF01025515.
  • ^ Laquey, R. E.; Mahajan, S. M.; Rutherford, P. H.; Tang, W. M. (1975). "Nonlinear Saturation of the Trapped-Ion Mode". Physical Review Letters. 34 (7): 391–394. doi:10.1103/PhysRevLett.34.391.
  • ^ Pathak, Jaideep; Hunt, Brian; Girvan, Michelle; Lu, Zhixin; Ott, Edward (2018). "Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach". Physical Review Letters. 120 (2): 024102. doi:10.1103/PhysRevLett.120.024102. ISSN 0031-9007. PMID 29376715.
  • ^ Vlachas, P.R.; Pathak, J.; Hunt, B.R.; Sapsis, T.P.; Girvan, M.; Ott, E.; Koumoutsakos, P. (2020-03-21). "Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics". Neural Networks. 126: 191–217. arXiv:1910.05266. doi:10.1016/j.neunet.2020.02.016. ISSN 0893-6080. PMID 32248008. S2CID 211146609.
  • ^ a b Kalogirou, A.; Keaveny, E. E.; Papageorgiou, D. T. (2015). "An in-depth numerical study of the two-dimensional Kuramoto–Sivashinsky equation". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 471 (2179): 20140932. doi:10.1098/rspa.2014.0932. ISSN 1364-5021. PMC 4528647. PMID 26345218.
  • ^ Tadmor, Eitan (1986). "The Well-Posedness of the Kuramoto–Sivashinsky Equation". SIAM Journal on Mathematical Analysis. 17 (4): 884–893. doi:10.1137/0517063. hdl:1903/8432. ISSN 0036-1410.
  • ^ a b c Cvitanović, Predrag; Davidchack, Ruslan L.; Siminos, Evangelos (2010). "On the State Space Geometry of the Kuramoto–Sivashinsky Flow in a Periodic Domain". SIAM Journal on Applied Dynamical Systems. 9 (1): 1–33. arXiv:0709.2944. doi:10.1137/070705623. ISSN 1536-0040. S2CID 17048798.
  • ^ Michelson, Daniel (1986). "Steady solutions of the Kuramoto-Sivashinsky equation". Physica D: Nonlinear Phenomena. 19 (1): 89–111. doi:10.1016/0167-2789(86)90055-2. ISSN 0167-2789.
  • ^ a b Papageorgiou, D.T.; Smyrlis, Y.S. (1991), "The route to chaos for the Kuramoto-Sivashinsky equation", Theoret. Comput. Fluid Dynamics, 3: 15–42, doi:10.1007/BF00271514, hdl:2060/19910004329, ISSN 1432-2250, S2CID 116955014
  • ^ Topper, J.; Kawahara, T. (1978). "Approximate equations for long nonlinear waves on a viscous fluid". Journal of the Physical Society of Japan. 44 (2): 663–666. doi:10.1143/JPSJ.44.2003.
  • ^ Chang, H. C.; Demekhin, E. A.; Kopelevich, D. I. (1993). "Laminarizing effects of dispersion in an active-dissipative nonlinear medium". Physica D: Nonlinear Phenomena. 63 (3–4): 299–320. doi:10.1016/0167-2789(93)90113-F. ISSN 1872-8022.
  • ^ Akrivis, G., Papageorgiou, D. T., & Smyrlis, Y. S. (2012). Computational study of the dispersively modified Kuramoto–Sivashinsky equation. SIAM Journal on Scientific Computing, 34(2), A792-A813.
  • ^ a b Rajamanickam, P.; Daou, J. (2023). "Tricritical point as a crossover between type-Is and type-IIs bifurcations". Progress in Scale Modeling, an International Journal. 4 (1): 2. doi:10.13023/psmij.2023.04-01-02. ISSN 2693-969X.
  • ^ Nikolaevskii, V. N. (1989). Dynamics of viscoelastic media with internal oscillators. In Recent Advances in Engineering Science: A Symposium dedicated to A. Cemal Eringen June 20–22, 1988, Berkeley, California (pp. 210-221). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • ^ Tribelsky, M. I., & Tsuboi, K. (1996). New scenario for transition to turbulence?. Physical review letters, 76(10), 1631.
  • ^ Matthews, P. C., & Cox, S. M. (2000). One-dimensional pattern formation with Galilean invariance near a stationary bifurcation. Physical Review E, 62(2), R1473.
  • ^ Cuerno, Rodolfo; Barabási, Albert-László (1995). "Dynamic Scaling of Ion-Sputtered Surfaces". Physical Review Letters. 74 (23): 4746–4749. arXiv:cond-mat/9411083. doi:10.1103/PhysRevLett.74.4746. ISSN 0031-9007. PMID 10058588. S2CID 18148655.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Kuramoto–Sivashinsky_equation&oldid=1224764084"

    Categories: 
    Differential equations
    Fluid dynamics
    Combustion
    Chaotic maps
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 20 May 2024, at 09:27 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki