Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definitions  





2 Examples  



2.1  Σ0=Π0=Δ0 formulas and concepts  





2.2  Δ1-formulas and concepts  





2.3  Σ1-formulas and concepts  





2.4  Π1-formulas and concepts  





2.5  Δ2-formulas and concepts  





2.6  Σ2-formulas and concepts  





2.7  Π2-formulas and concepts  





2.8  Δ3-formulas and concepts  





2.9  Σ3-formulas and concepts  





2.10  Π3-formulas and concepts  





2.11  Σ4-formulas and concepts  







3 Properties  





4 See also  





5 References  



5.1  Citations  
















Lévy hierarchy






Deutsch
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inset theory and mathematical logic, the Lévy hierarchy, introduced by Azriel Lévy in 1965, is a hierarchy of formulas in the formal language of the Zermelo–Fraenkel set theory, which is typically called just the language of set theory. This is analogous to the arithmetical hierarchy, which provides a similar classification for sentences of the language of arithmetic.

Definitions[edit]

In the language of set theory, atomic formulas are of the form x = y or x ∈ y, standing for equality and set membership predicates, respectively.

The first level of the Lévy hierarchy is defined as containing only formulas with no unbounded quantifiers and is denoted by .[1] The next levels are given by finding a formula in prenex normal form which is provably equivalent over ZFC, and counting the number of changes of quantifiers:[2]p. 184

A formula is called:[1][3]

As a formula might have several different equivalent formulas in prenex normal form, it might belong to several different levels of the hierarchy. In this case, the lowest possible level is the level of the formula.[citation needed]

Lévy's original notation was (resp. ) due to the provable logical equivalence,[4] strictly speaking the above levels should be referred to as (resp. ) to specify the theory in which the equivalence is carried out, however it is usually clear from context.[5]pp. 441–442 Pohlers has defined in particular semantically, in which a formula is " in a structure ".[6]

The Lévy hierarchy is sometimes defined for other theories S. In this case and by themselves refer only to formulas that start with a sequence of quantifiers with at most i−1 alternations,[citation needed] and and refer to formulas equivalent to and formulas in the language of the theory S. So strictly speaking the levels and of the Lévy hierarchy for ZFC defined above should be denoted by and .

Examples[edit]

Σ000 formulas and concepts[edit]

Δ1-formulas and concepts[edit]

Σ1-formulas and concepts[edit]

Π1-formulas and concepts[edit]

Δ2-formulas and concepts[edit]

Σ2-formulas and concepts[edit]

Π2-formulas and concepts[edit]

Δ3-formulas and concepts[edit]

Σ3-formulas and concepts[edit]

Π3-formulas and concepts[edit]

Σ4-formulas and concepts[edit]

Properties[edit]

Let . The Lévy hierarchy has the following properties:[2]p. 184

Devlin p. 29

See also[edit]

References[edit]

Citations[edit]

  1. ^ a b Walicki, Michal (2012). Mathematical Logic, p. 225. World Scientific Publishing Co. Pte. Ltd. ISBN 9789814343862
  • ^ a b T. Jech, 'Set Theory: The Third Millennium Edition, revised and expanded'. Springer Monographs in Mathematics (2006). ISBN 3-540-44085-2.
  • ^ J. Baeten, Filters and ultrafilters over definable subsets over admissible ordinals (1986). p.10
  • ^ a b A. Lévy, 'A hierarchy of formulas in set theory' (1965), second edition
  • ^ K. Hauser, "Indescribable cardinals and elementary embeddings". Journal of Symbolic Logic vol. 56, iss. 2 (1991), pp.439--457.
  • ^ W. Pohlers, Proof Theory: The First Step into Impredicativity (2009) (p.245)
  • ^ a b c d e f g h i j Jon Barwise, Admissible Sets and Structures. Perspectives in Mathematical Logic (1975)
  • ^ a b c d e f D. Monk 2011, Graduate Set Theory (pp.168--170). Archived 2011-12-06
  • ^ W. A. R. Weiss, An Introduction to Set Theory (chapter 13). Accessed 2022-12-01
  • ^ K. J. Williams, Minimum models of second-order set theories (2019, p.4). Accessed 2022 July 25.
  • ^ F. R. Drake, Set Theory: An Introduction to Large Cardinals (p.83). Accessed 1 July 2022.
  • ^ a b c Azriel Lévy, "On the logical complexity of several axioms of set theory" (1971). Appearing in Axiomatic Set Theory: Proceedings of Symposia in Pure Mathematics, vol. 13 part 1, pp.219--230

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Lévy_hierarchy&oldid=1201213534"

    Categories: 
    Mathematical logic
    Set theory
    Mathematical logic hierarchies
    Hidden categories: 
    All articles with unsourced statements
    Articles with unsourced statements from July 2023
     



    This page was last edited on 31 January 2024, at 04:40 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki