Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Mathematical description  





2 See also  





3 References  














LandauPeierls instability







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Landau–Peierls instability refers to the phenomenon in which the mean square displacements due to thermal fluctuatuions diverge in the thermodynamic limit and is named after Lev Landau (1937) and Rudolf Peierls (1934).[1][2] This instability prevails in one-dimensional ordering of atoms/molecules in 3D space such as 1D crystals and smectics and also in two-dimensional ordering in 2D space such as a monomolecular adsorbed filsms at the interface between two isotrophic phaes. The divergence is logarthmic, which is rather slow and therefore it is possible to realize substances in practice that are subject to Landau–Peierls instability.

Mathematical description[edit]

Consider a one-dimensionally ordered crystal in 3D space. The density function is then given by . Since this is a 1D system, only the displacement along the -direction due to thermal fluctuations can smooth out the density function; dispalcement in the other two directions are irrelevant. The net change in the free energy due to the fluectuations is given by

where is the free energy without flcutuations. Note that cannot depend on or be a linear function of because the first case corresponds to a simple uniform translation and the second case is unstable. Thus, must be quadratic in the derivatives of . These are given by[3]

where , and are material constants; in smectics, where the symmetry must be obeyed, the second term has to be set zero, i.e., . In the Fourier space (in a unit volume), this is just

From the equipartition theorem, we can deduce that[4]

The mean square displacement is thus given by

where the integral is cut off at a large wavenumber that is comparable to the linear dimension of the element undergoing deformation. In the thermodynamic limit, , the integral diverges logarthmically. This means that the an element at a particular point is displaced through very large distances and therefore smoothes out the function , leaving constant as the only solution and destroying the 1D ordering.

See also[edit]

References[edit]

  1. ^ Peierls, R. E. (1935). Annales de l’institut Henri Poincare. Quelques proprietes typiques des corpses solides, 5(177).
  • ^ Landau, L. D. (1937). Phys. Z. Sowjet Union, 2(26).
  • ^ Landau, L. D., & Lifshitz, E. M. (2013). Statistical Physics: Volume 5 (Vol. 5). Elsevier.
  • ^ De Gennes, P. G., & Prost, J. (1993). The physics of liquid crystals (No. 83). Oxford university press.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Landau–Peierls_instability&oldid=1233051429"

    Categories: 
    Phases of matter
    Statistical mechanics
     



    This page was last edited on 7 July 2024, at 00:57 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki