Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Example  





2 Properties  





3 Characteristic lattices  





4 Characterizing groups by their subgroup lattices  





5 References  





6 External links  














Lattice of subgroups






Español
Français
Polski
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Hasse diagram of the lattice of subgroups of the dihedral group Dih4, with the subgroups represented by their cycle graphs

Inmathematics, the lattice of subgroups of a group is the lattice whose elements are the subgroupsof, with the partial ordering being set inclusion. In this lattice, the join of two subgroups is the subgroup generated by their union, and the meet of two subgroups is their intersection.

Example

[edit]

The dihedral group Dih4 has ten subgroups, counting itself and the trivial subgroup. Five of the eight group elements generate subgroups of order two, and the other two non-identity elements both generate the same cyclic subgroup of order four. In addition, there are two subgroups of the form Z2 × Z2, generated by pairs of order-two elements. The lattice formed by these ten subgroups is shown in the illustration.

This example also shows that the lattice of all subgroups of a group is not a modular lattice in general. Indeed, this particular lattice contains the forbidden "pentagon" N5 as a sublattice.

Properties

[edit]

For any A, B, and C subgroups of a group with AC (A a subgroup of C) then ABC = A(BC); the multiplication here is the product of subgroups. This property has been called the modular property of groups (Aschbacher 2000) or (Dedekind's) modular law (Robinson 1996, Cohn 2000). Since for two normal subgroups the product is actually the smallest subgroup containing the two, the normal subgroups form a modular lattice.

The lattice theorem establishes a Galois connection between the lattice of subgroups of a group and that of its quotients.

The Zassenhaus lemma gives an isomorphism between certain combinations of quotients and products in the lattice of subgroups.

In general, there is no restriction on the shape of the lattice of subgroups, in the sense that every lattice is isomorphic to a sublattice of the subgroup lattice of some group. Furthermore, every finite lattice is isomorphic to a sublattice of the subgroup lattice of some finite group (Schmidt 1994, p. 9). Every finite distributive lattice is also isomorphic to the normal subgroup lattice of some group (Silcock 1977).

Characteristic lattices

[edit]

Subgroups with certain properties form lattices, but other properties do not.

However, neither finite subgroups nor torsion subgroups form a lattice: for instance, the free product is generated by two torsion elements, but is infinite and contains elements of infinite order.

The fact that normal subgroups form a modular lattice is a particular case of a more general result, namely that in any Maltsev variety (of which groups are an example), the lattice of congruences is modular (Kearnes & Kiss 2013).

Characterizing groups by their subgroup lattices

[edit]

Lattice-theoretic information about the lattice of subgroups can sometimes be used to infer information about the original group, an idea that goes back to the work of Øystein Ore (1937, 1938). For instance, as Ore proved, a group is locally cyclic if and only if its lattice of subgroups is distributive. If additionally the lattice satisfies the ascending chain condition, then the group is cyclic.

Groups whose lattice of subgroups is a complemented lattice are called complemented groups (Zacher 1953), and groups whose lattice of subgroups are modular lattices are called Iwasawa groups or modular groups (Iwasawa 1941). Lattice-theoretic characterizations of this type also exist for solvable groups and perfect groups (Suzuki 1951).

References

[edit]
[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Lattice_of_subgroups&oldid=1191656938"

Categories: 
Lattice theory
Group theory
 



This page was last edited on 24 December 2023, at 22:09 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki