Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Formal statement  





2 Sketch of a proof  





3 LefschetzHopf theorem  





4 Relation to the Euler characteristic  





5 Relation to the Brouwer fixed-point theorem  





6 Historical context  





7 Frobenius  





8 See also  





9 Notes  





10 References  





11 External links  














Lefschetz fixed-point theorem






Català
Deutsch
Español
Français


Polski
Русский
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, the Lefschetz fixed-point theorem is a formula that counts the fixed points of a continuous mapping from a compact topological space to itself by means of traces of the induced mappings on the homology groupsof. It is named after Solomon Lefschetz, who first stated it in 1926.

The counting is subject to an imputed multiplicity at a fixed point called the fixed-point index. A weak version of the theorem is enough to show that a mapping without any fixed point must have rather special topological properties (like a rotation of a circle).

Formal statement[edit]

For a formal statement of the theorem, let

be a continuous map from a compact triangulable space to itself. Define the Lefschetz number ofby

the alternating (finite) sum of the matrix traces of the linear maps inducedbyon, the singular homology groups of with rational coefficients.

A simple version of the Lefschetz fixed-point theorem states: if

then has at least one fixed point, i.e., there exists at least one in such that . In fact, since the Lefschetz number has been defined at the homology level, the conclusion can be extended to say that any map homotopicto has a fixed point as well.

Note however that the converse is not true in general: may be zero even if has fixed points, as is the case for the identity map on odd-dimensional spheres.

Sketch of a proof[edit]

First, by applying the simplicial approximation theorem, one shows that if has no fixed points, then (possibly after subdividing ) is homotopic to a fixed-point-free simplicial map (i.e., it sends each simplex to a different simplex). This means that the diagonal values of the matrices of the linear maps induced on the simplicial chain complexof must be all be zero. Then one notes that, in general, the Lefschetz number can also be computed using the alternating sum of the matrix traces of the aforementioned linear maps (this is true for almost exactly the same reason that the Euler characteristic has a definition in terms of homology groups; see below for the relation to the Euler characteristic). In the particular case of a fixed-point-free simplicial map, all of the diagonal values are zero, and thus the traces are all zero.

Lefschetz–Hopf theorem[edit]

A stronger form of the theorem, also known as the Lefschetz–Hopf theorem, states that, if has only finitely many fixed points, then

where is the set of fixed points of , and denotes the index of the fixed point .[1] From this theorem one deduces the Poincaré–Hopf theorem for vector fields.

Relation to the Euler characteristic[edit]

The Lefschetz number of the identity map on a finite CW complex can be easily computed by realizing that each can be thought of as an identity matrix, and so each trace term is simply the dimension of the appropriate homology group. Thus the Lefschetz number of the identity map is equal to the alternating sum of the Betti numbers of the space, which in turn is equal to the Euler characteristic . Thus we have

Relation to the Brouwer fixed-point theorem[edit]

The Lefschetz fixed-point theorem generalizes the Brouwer fixed-point theorem, which states that every continuous map from the -dimensional closed unit disk to must have at least one fixed point.

This can be seen as follows: is compact and triangulable, all its homology groups except are zero, and every continuous map induces the identity map , whose trace is one; all this together implies that is non-zero for any continuous map .

Historical context[edit]

Lefschetz presented his fixed-point theorem in (Lefschetz 1926). Lefschetz's focus was not on fixed points of maps, but rather on what are now called coincidence points of maps.

Given two maps and from an orientable manifold to an orientable manifold of the same dimension, the Lefschetz coincidence numberof and is defined as

where is as above, is the homomorphism induced by on the cohomology groups with rational coefficients, and and are the Poincaré duality isomorphisms for and , respectively.

Lefschetz proved that if the coincidence number is nonzero, then and have a coincidence point. He noted in his paper that letting and letting be the identity map gives a simpler result, which we now know as the fixed-point theorem.

Frobenius[edit]

Let be a variety defined over the finite field with elements and let be the base change of to the algebraic closure of . The Frobenius endomorphismof (often the geometric Frobenius, or just the Frobenius), denoted by , maps a point with coordinates to the point with coordinates . Thus the fixed points of are exactly the points of with coordinates in ; the set of such points is denoted by . The Lefschetz trace formula holds in this context, and reads:

This formula involves the trace of the Frobenius on the étale cohomology, with compact supports, of with values in the field of -adic numbers, where is a prime coprime to .

If is smooth and equidimensional, this formula can be rewritten in terms of the arithmetic Frobenius , which acts as the inverse of on cohomology:

This formula involves usual cohomology, rather than cohomology with compact supports.

The Lefschetz trace formula can also be generalized to algebraic stacks over finite fields.

See also[edit]

Notes[edit]

  1. ^ Dold, Albrecht (1980). Lectures on algebraic topology. Vol. 200 (2nd ed.). Berlin, New York: Springer-Verlag. ISBN 978-3-540-10369-1. MR 0606196., Proposition VII.6.6.

References[edit]

External links[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Lefschetz_fixed-point_theorem&oldid=1197700953"

Categories: 
Fixed-point theorems
Theory of continuous functions
Theorems in algebraic topology
Hidden categories: 
Articles with short description
Short description is different from Wikidata
Articles lacking in-text citations from March 2022
All articles lacking in-text citations
Articles with GND identifiers
 



This page was last edited on 21 January 2024, at 16:13 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki