Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Binary operation as an operator  





2 Left and right modules  





3 Other examples  





4 In category theory  





5 See also  





6 External links  














Left and right (algebra)






Español
Română
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


s a
s b
s c
s d
s e
s f
s g
a t
b t
c t
d t
e t
f t
g t
Left multiplication to s and right multiplication to t. An abstract notation without any specific sense.

Inalgebra, the terms left and right denote the order of a binary operation (usually, but not always, called "multiplication") in non-commutative algebraic structures. A binary operation ∗ is usually written in the infix form:

st

The argument s is placed on the left side, and the argument t is on the right side. Even if the symbol of the operation is omitted, the order of s and t does matter (unless ∗ is commutative).

Atwo-sided property is fulfilled on both sides. A one-sided property is related to one (unspecified) of two sides.

Although the terms are similar, left–right distinction in algebraic parlance is not related either to left and right limitsincalculus, or to left and right in geometry.

Binary operation as an operator

[edit]

A binary operation  may be considered as a familyofunary operators through currying:

Rt(s) = st,

depending on t as a parameter – this is the family of right operations. Similarly,

Ls(t) = st

defines the family of left operations parametrized with s.

If for some e, the left operation Le is the identity operation, then e is called a left identity. Similarly, if Re = id, then e is a right identity.

Inring theory, a subring which is invariant under any left multiplication in a ring is called a left ideal. Similarly, a right multiplication-invariant subring is a right ideal.

Left and right modules

[edit]

Over non-commutative rings, the left–right distinction is applied to modules, namely to specify the side where a scalar (module element) appears in the scalar multiplication.

Left module Right module
s(x + y) = sx + sy
(s1 + s2)x = s1x + s2x
s(tx) = (s t)x
(x + y)t = xt + yt
x(t1 + t2) = xt1 + xt2
(xs)t = x(s t)

The distinction is not purely syntactical because one gets two different associativity rules (the lowest row in the table) which link multiplication in a module with multiplication in a ring.

Abimodule is simultaneously a left and right module, with two different scalar multiplication operations, obeying an associativity condition on them.[vague]

Other examples

[edit]

In category theory

[edit]

Incategory theory the usage of "left" and "right" has some algebraic resemblance, but refers to left and right sides of morphisms. See adjoint functors.

See also

[edit]
[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Left_and_right_(algebra)&oldid=1178625449"

Categories: 
Abstract algebra
Mathematical terminology
Hidden categories: 
Articles with short description
Short description matches Wikidata
Articles needing additional references from November 2012
All articles needing additional references
All Wikipedia articles needing clarification
Wikipedia articles needing clarification from April 2020
 



This page was last edited on 4 October 2023, at 21:18 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki