Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Proofs  



1.1  Proof 1  





1.2  Proof 2  







2 Convergence  





3 Unusual behaviour  





4 Euler product  





5 See also  





6 References  





7 External links  














Leibniz formula for π






العربية
Català
Dansk
Deutsch
Español
Euskara

Հայերեն
ि
Italiano
עברית

Português
Română
Русский
Shqip
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Leibniz formula for pi)

Inmathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that

analternating series.

It is sometimes called the Madhava–Leibniz series as it was first discovered by the Indian mathematician Madhava of Sangamagrama or his followers in the 14th–15th century (see Madhava series),[1] and was later independently rediscovered by James Gregory in 1671 and Leibniz in 1673.[2] The Taylor series for the inverse tangent function, often called Gregory's series, is

The Leibniz formula is the special case [3]

It also is the Dirichlet L-series of the non-principal Dirichlet character of modulus 4 evaluated at and therefore the value β(1) of the Dirichlet beta function.

Proofs[edit]

Proof 1[edit]

Considering only the integral in the last term, we have:

Therefore, by the squeeze theorem, as n → ∞, we are left with the Leibniz series:

Proof 2[edit]

Let , when , the series converges uniformly, then

Therefore, if approaches so that it is continuous and converges uniformly, the proof is complete, where, the series to be converges by the Leibniz's test, and also, approaches from within the Stolz angle, so from Abel's theorem this is correct.

Convergence[edit]

Comparison of the convergence of the Leibniz formula () and several historical infinite series for π. Sn is the approximation after taking n terms. Each subsequent subplot magnifies the shaded area horizontally by 10 times. (click for detail)

Leibniz's formula converges extremely slowly: it exhibits sublinear convergence. Calculating π to 10 correct decimal places using direct summation of the series requires precisely five billion terms because 4/2k + 1 <10−10 for k > 2 × 10101/2 (one needs to apply Calabrese error bound). To get 4 correct decimal places (error of 0.00005) one needs 5000 terms.[4] Even better than Calabrese or Johnsonbaugh error bounds are available.[5]

However, the Leibniz formula can be used to calculate π to high precision (hundreds of digits or more) using various convergence acceleration techniques. For example, the Shanks transformation, Euler transformorVan Wijngaarden transformation, which are general methods for alternating series, can be applied effectively to the partial sums of the Leibniz series. Further, combining terms pairwise gives the non-alternating series

which can be evaluated to high precision from a small number of terms using Richardson extrapolation or the Euler–Maclaurin formula. This series can also be transformed into an integral by means of the Abel–Plana formula and evaluated using techniques for numerical integration.

Unusual behaviour[edit]

If the series is truncated at the right time, the decimal expansion of the approximation will agree with that of π for many more digits, except for isolated digits or digit groups. For example, taking five million terms yields

where the underlined digits are wrong. The errors can in fact be predicted; they are generated by the Euler numbers En according to the asymptotic formula

where N is an integer divisible by 4. If N is chosen to be a power of ten, each term in the right sum becomes a finite decimal fraction. The formula is a special case of the Euler–Boole summation formula for alternating series, providing yet another example of a convergence acceleration technique that can be applied to the Leibniz series. In 1992, Jonathan Borwein and Mark Limber used the first thousand Euler numbers to calculate π to 5,263 decimal places with the Leibniz formula.[6]

Euler product[edit]

The Leibniz formula can be interpreted as a Dirichlet series using the unique non-principal Dirichlet character modulo 4. As with other Dirichlet series, this allows the infinite sum to be converted to an infinite product with one term for each prime number. Such a product is called an Euler product. It is: In this product, each term is a superparticular ratio, each numerator is an odd prime number, and each denominator is the nearest multiple of 4 to the numerator.[7]

See also[edit]

References[edit]

  1. ^ Plofker, Kim (November 2012), "Tantrasaṅgraha of Nīlakaṇṭha Somayājī by K. Ramasubramanian and M. S. Sriram", The Mathematical Intelligencer, 35 (1): 86–88, doi:10.1007/s00283-012-9344-6, S2CID 124507583
  • ^ Roy, Ranjan (1990). "The Discovery of the Series Formula for π by Leibniz, Gregory and Nilakantha" (PDF). Mathematics Magazine. 63 (5): 291–306. doi:10.1080/0025570X.1990.11977541.
  • Horvath, Miklos (1983). "On the Leibnizian quadrature of the circle" (PDF). Annales Universitatis Scientiarum Budapestiensis (Sectio Computatorica). 4: 75–83.
  • ^ Andrews, George E.; Askey, Richard; Roy, Ranjan (1999), Special Functions, Cambridge University Press, p. 58, ISBN 0-521-78988-5
  • ^ Villarino, Mark B. (2018-04-21). "The Error in an Alternating Series". The American Mathematical Monthly. 125 (4): 360–364. doi:10.1080/00029890.2017.1416875. hdl:10669/75532. ISSN 0002-9890. S2CID 56124579.
  • ^ Rattaggi, Diego (2018-08-30). "Error estimates for the Gregory-Leibniz series and the alternating harmonic series using Dalzell integrals". arXiv:1809.00998 [math.CA].
  • ^ Borwein, Jonathan; Bailey, David; Girgensohn, Roland (2004), "1.8.1: Gregory's Series Reexamined", Experimentation in mathematics: Computational paths to discovery, A K Peters, pp. 28–30, ISBN 1-56881-136-5, MR 2051473
  • ^ Debnath, Lokenath (2010), The Legacy of Leonhard Euler: A Tricentennial Tribute, World Scientific, p. 214, ISBN 9781848165267.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Leibniz_formula_for_π&oldid=1233661287"

    Categories: 
    Pi algorithms
    Gottfried Wilhelm Leibniz
    Mathematical series
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles containing proofs
     



    This page was last edited on 10 July 2024, at 07:34 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki