Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Convergence criteria  





2 Product representations of functions  





3 See also  





4 References  





5 External links  














Infinite product






العربية

Čeština
Deutsch
Español
Français

ि
Bahasa Indonesia
Italiano
Bahasa Melayu
Nederlands

Polski
Русский
Svenska

Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, for a sequence of complex numbers a1, a2, a3, ... the infinite product

is defined to be the limit of the partial products a1a2...anasn increases without bound. The product is said to converge when the limit exists and is not zero. Otherwise the product is said to diverge. A limit of zero is treated specially in order to obtain results analogous to those for infinite sums. Some sources allow convergence to 0 if there are only a finite number of zero factors and the product of the non-zero factors is non-zero, but for simplicity we will not allow that here. If the product converges, then the limit of the sequence anasn increases without bound must be 1, while the converse is in general not true.

The best known examples of infinite products are probably some of the formulae for π, such as the following two products, respectively by Viète (Viète's formula, the first published infinite product in mathematics) and John Wallis (Wallis product):

Convergence criteria[edit]

The product of positive real numbers

converges to a nonzero real number if and only if the sum

converges. This allows the translation of convergence criteria for infinite sums into convergence criteria for infinite products. The same criterion applies to products of arbitrary complex numbers (including negative reals) if the logarithm is understood as a fixed branch of logarithm which satisfies ln(1) = 0, with the proviso that the infinite product diverges when infinitely many an fall outside the domain of ln, whereas finitely many such an can be ignored in the sum.

For products of reals in which each , written as, for instance, , where[clarification needed] , the bounds

show that the infinite product converges if the infinite sum of the pn converges. This relies on the Monotone convergence theorem. We can show the converse by observing that, if , then

and by the limit comparison test it follows that the two series

are equivalent meaning that either they both converge or they both diverge.

If the series diverges to , then the sequence of partial products of the an converges to zero. The infinite product is said to diverge to zero.[1]

For the case where the have arbitrary signs, the convergence of the sum does not guarantee the convergence of the product . For example, if , then converges, but diverges to zero. However, if is convergent, then the product converges absolutely–that is, the factors may be rearranged in any order without altering either the convergence, or the limiting value, of the infinite product.[2] Also, if is convergent, then the sum and the product are either both convergent, or both divergent.[3]

Product representations of functions[edit]

One important result concerning infinite products is that every entire function f(z) (that is, every function that is holomorphic over the entire complex plane) can be factored into an infinite product of entire functions, each with at most a single root. In general, if f has a root of order m at the origin and has other complex roots at u1, u2, u3, ... (listed with multiplicities equal to their orders), then

where λn are non-negative integers that can be chosen to make the product converge, and is some entire function (which means the term before the product will have no roots in the complex plane). The above factorization is not unique, since it depends on the choice of values for λn. However, for most functions, there will be some minimum non-negative integer p such that λn = p gives a convergent product, called the canonical product representation. This p is called the rank of the canonical product. In the event that p = 0, this takes the form

This can be regarded as a generalization of the fundamental theorem of algebra, since for polynomials, the product becomes finite and is constant.

In addition to these examples, the following representations are of special note:

Function Infinite product representation(s) Notes
Simple pole
Sinc function This is due to Euler. Wallis' formula for π is a special case of this.
Reciprocal gamma function Schlömilch[clarification needed]
Weierstrass sigma function Here is the lattice without the origin.
Q-Pochhammer symbol Widely used in q-analog theory. The Euler function is a special case.
Ramanujan theta function An expression of the Jacobi triple product, also used in the expression of the Jacobi theta function
Riemann zeta function Here pn denotes the nthprime number. This is a special case of the Euler product.

The last of these is not a product representation of the same sort discussed above, as ζ is not entire. Rather, the above product representation of ζ(z) converges precisely for Re(z) > 1, where it is an analytic function. By techniques of analytic continuation, this function can be extended uniquely to an analytic function (still denoted ζ(z)) on the whole complex plane except at the point z = 1, where it has a simple pole.

See also[edit]

References[edit]

  1. ^ Jeffreys, Harold; Jeffreys, Bertha Swirles (1999). Methods of Mathematical Physics. Cambridge Mathematical Library (3rd revised ed.). Cambridge University Press. p. 52. ISBN 1107393671.
  • ^ Trench, William F. (1999). "Conditional Convergence of Infinite Products" (PDF). American Mathematical Monthly. 106 (7): 646–651. doi:10.1080/00029890.1999.12005098. Retrieved December 10, 2018.
  • ^ Knopp, Konrad (1954). Theory and Application of Infinite Series. London: Blackie & Son Ltd.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Infinite_product&oldid=1192331520"

    Categories: 
    Sequences and series
    Mathematical analysis
    Multiplication
    Infinite products
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Wikipedia articles needing clarification from March 2023
    Wikipedia articles needing clarification from September 2022
    Articles with NKC identifiers
     



    This page was last edited on 28 December 2023, at 20:29 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki