Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Motivation  





2 Physical basics  





3 Methods of cooling  



3.1  Parametric feedback cooling and cold damping  





3.2  Cavity-enhanced Sisyphus cooling  





3.3  Coherent scattering cavity cooling  







4 References  














Levitated optomechanics







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


A silica nanoparticle trapped in optical tweezers, illuminated by a green laser beam

Levitated optomechanics is a field of mesoscopic physics which deals with the mechanical motion of mesoscopic particles which are opticallyorelectricallyormagnetically levitated. Through the use of levitation, it is possible to decouple the particle's mechanical motion exceptionally well from the environment. This in turn enables the study of high-mass quantum physics, out-of-equilibrium- and nano-thermodynamics[1] and provides the basis for precise sensing applications.[2]

Motivation

[edit]

In order to use mechanical oscillators in the regime of quantum physics or for sensing applications, low damping of the oscillator's motion and thus high quality factors are desirable. In nano and micromechanics, the Q-factor of a system is often limited by its suspension, which usually demands filigree structures. Nevertheless, the maximally achievable Q-factor usually correlates with the system's size,[3] requiring large systems for achieving high Q-factors.

Particle levitation in external fields can alleviate this constraint. This is one of the reasons why the field of levitated optomechanics has become attractive for research on the foundations in physics and for high-precision applications.

Physical basics

[edit]

The interaction between a dielectric particle with polarizability and an electric field is given by the gradient force . When a particle is trapped and optically levitated in the focus of a Gaussian laser beam, the force can be approximated to first order by with , i.e. a harmonic oscillator with frequency , where  is the particle's mass. Including passive damping, active external feedback and coupling results in the Langevin equations of motion:

Here  is the total damping rate, which has usually two dominant contributions: collisions with atoms or molecules of the background gas and photon shot noise, which becomes dominant below pressures on the order of 10−6 mbar.

The coupling term allows to model any coupling to an external heat bath.

The external feedback is usually used to cool and control the particle motion.

The approximation of a classical harmonic oscillator holds true until one reaches the regime of quantum mechanics, where the quantum harmonic oscillator is the superior approximation and the quantization of the energy levels becomes apparent. The QHO has a ground state of lowest energy where both position and velocity have a minimal variance, determined by the Heisenberg uncertainty principle.

Such quantum states are interesting starting conditions for preparing non-Gaussian quantum states, quantum enhanced sensing, matter-wave interferometry or the realization of entanglement in many-particle systems.[4]

Methods of cooling

[edit]

Parametric feedback cooling and cold damping

[edit]

The idea of feedback cooling is to apply a position and/or velocity dependent force on the particle in a way which produces a negative feedback loop.

One way to achieve that is by adding a feedback term, which is proportional to the particle's position (). Since that mechanism provides damping, which cools down the mechanical motion, without the introduction of fluctuations, it is referred to as “cold damping”. The first experiment employing this type of cooling was done in 1977 by Arthur Ashkin,[5] who received the 2018 Nobel Prize in Physics for his pioneering work on trapping with optical tweezers.

Instead of applying a linear feedback signal, one can also combine position and velocity via  to get a signal with twice the frequency of the particle's oscillation. This way the stiffness of the trap increases when the particle moves out of the trap and decreases when the particle is moving back.[6]

Cavity-enhanced Sisyphus cooling

[edit]

Coherent scattering cavity cooling

[edit]

References

[edit]
  1. ^ Rademacher, Markus; Konopik, Michael; Debiossac, Maxime; Grass, David; Lutz, Eric; Kiesel, Nikolai (2022-02-15). "Nonequilibrium Control of Thermal and Mechanical Changes in a Levitated System". Physical Review Letters. 128 (7): 070601. arXiv:2103.10898. doi:10.1103/PhysRevLett.128.070601. ISSN 0031-9007. PMID 35244419. S2CID 232290453.
  • ^ Rademacher, Markus; Millen, James; Li, Ying Lia (2020-11-26). "Quantum sensing with nanoparticles for gravimetry: when bigger is better". Advanced Optical Technologies. 9 (5): 227–239. arXiv:2005.14642. doi:10.1515/aot-2020-0019. ISSN 2192-8584. S2CID 219124060.
  • ^ Imboden, Matthias; Mohanty, Pritiraj (2014-01-20). "Dissipation in nanoelectromechanical systems". Physics Reports. 534 (3): 89–146. doi:10.1016/j.physrep.2013.09.003.
  • ^ Belenchia, Alessio; Carlesso, Matteo; Bayraktar, Ömer; Dequal, Daniele; Derkach, Ivan; Gasbarri, Giulio; Herr, Waldemar; Li, Ying Lia; Rademacher, Markus; Sidhu, Jasminder; Oi, Daniel K. L.; Seidel, Stephan T.; Kaltenbaek, Rainer; Marquardt, Christoph; Ulbricht, Hendrik (2022-03-11). "Quantum physics in space". Physics Reports. 951: 1–70. doi:10.1016/j.physrep.2021.11.004. hdl:11368/3013388. ISSN 0370-1573. S2CID 236881667.
  • ^ Ashkin, A.; Dziedzic, J. M. (1977-02-15). "Feedback stabilization of optically levitated particles". Applied Physics Letters. 30 (4): 202–204. doi:10.1063/1.89335. ISSN 0003-6951.
  • ^ Gieseler, Jan. "Dynamics of optically levitated nanoparticles in high vacuum" (PDF).

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Levitated_optomechanics&oldid=1193727817"

    Categories: 
    Mesoscopic physics
    Quantum mechanics
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Wikipedia articles that are too technical from January 2023
    All articles that are too technical
    Articles to be expanded from January 2023
    All articles to be expanded
    Articles with empty sections from January 2023
    All articles with empty sections
    Articles using small message boxes
     



    This page was last edited on 5 January 2024, at 09:15 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki