Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Statement  





2 Proof  





3 Example  





4 One-sided version  





5 Example  





6 Converse of the one-sided comparison test  





7 Example  





8 See also  





9 References  





10 Further reading  





11 External links  














Limit comparison test






Deutsch

ि
Nederlands
Oʻzbekcha / ўзбекча
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series.

Statement[edit]

Suppose that we have two series and with for all . Then if with , then either both series converge or both series diverge.[1]

Proof[edit]

Because we know that for every there is a positive integer such that for all we have that , or equivalently

As we can choose to be sufficiently small such that is positive. So and by the direct comparison test, if converges then so does .

Similarly , so if diverges, again by the direct comparison test, so does .

That is, both series converge or both series diverge.

Example[edit]

We want to determine if the series converges. For this we compare it with the convergent series

As we have that the original series also converges.

One-sided version[edit]

One can state a one-sided comparison test by using limit superior. Let for all . Then if with and converges, necessarily converges.

Example[edit]

Let and for all natural numbers . Now does not exist, so we cannot apply the standard comparison test. However, and since converges, the one-sided comparison test implies that converges.

Converse of the one-sided comparison test[edit]

Let for all . If diverges and converges, then necessarily , that is, . The essential content here is that in some sense the numbers are larger than the numbers .

Example[edit]

Let be analytic in the unit disc and have image of finite area. By Parseval's formula the area of the image of is proportional to . Moreover, diverges. Therefore, by the converse of the comparison test, we have , that is, .

See also[edit]

References[edit]

  1. ^ Swokowski, Earl (1983), Calculus with analytic geometry (Alternate ed.), Prindle, Weber & Schmidt, p. 516, ISBN 0-87150-341-7

Further reading[edit]

External links[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Limit_comparison_test&oldid=1144481127"

Category: 
Convergence tests
Hidden categories: 
Articles with short description
Short description matches Wikidata
Pages using sidebar with the child parameter
Articles containing proofs
 



This page was last edited on 14 March 2023, at 00:16 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki