Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Linear mass density  





2 Linear charge density  





3 Other applications  





4 Units  





5 See also  





6 References  














Linear density






العربية
Čeština
Español
Esperanto
فارسی
Français

Italiano

Nederlands

Русский
Sicilianu
Suomi
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The linear density, represented by λ, indicates the amount of a quantity, indicated by m, per unit length along a single dimension.

Linear density is the measure of a quantity of any characteristic value per unit of length. Linear mass density (titerintextile engineering, the amount of mass per unit length) and linear charge density (the amount of electric charge per unit length) are two common examples used in science and engineering.

The term linear density or linear mass density is most often used when describing the characteristics of one-dimensional objects, although linear density can also be used to describe the density of a three-dimensional quantity along one particular dimension. Just as density is most often used to mean mass density, the term linear density likewise often refers to linear mass density. However, this is only one example of a linear density, as any quantity can be measured in terms of its value along one dimension.

Linear mass density

[edit]

Consider a long, thin rod of mass and length . To calculate the average linear mass density, , of this one dimensional object, we can simply divide the total mass, , by the total length, : If we describe the rod as having a varying mass (one that varies as a function of position along the length of the rod, ), we can write: Each infinitesimal unit of mass, , is equal to the product of its linear mass density, , and the infinitesimal unit of length, : The linear mass density can then be understood as the derivative of the mass function with respect to the one dimension of the rod (the position along its length, )

The SI unit of linear mass density is the kilogram per meter (kg/m).

Linear density of fibers and yarns can be measured by many methods. The simplest one is to measure a length of material and weigh it. However, this requires a large sample and masks the variability of linear density along the thread, and is difficult to apply if the fibers are crimped or otherwise cannot lay flat relaxed. If the density of the material is known, the fibers are measured individually and have a simple shape, a more accurate method is direct imaging of the fiber with a scanning electron microscope to measure the diameter and calculation of the linear density. Finally, linear density is directly measured with a vibroscope. The sample is tensioned between two hard points, mechanical vibration is induced and the fundamental frequency is measured.[1][2]

Linear charge density

[edit]

Consider a long, thin wire of charge and length . To calculate the average linear charge density, , of this one dimensional object, we can simply divide the total charge, , by the total length, : If we describe the wire as having a varying charge (one that varies as a function of position along the length of the wire, ), we can write: Each infinitesimal unit of charge, , is equal to the product of its linear charge density, , and the infinitesimal unit of length, :[3] The linear charge density can then be understood as the derivative of the charge function with respect to the one dimension of the wire (the position along its length, )

Notice that these steps were exactly the same ones we took before to find .

The SI unit of linear charge density is the coulomb per meter (C/m).

Other applications

[edit]

Indrawingorprinting, the term linear density also refers to how densely or heavily a line is drawn.

The most famous abstraction of linear density is the probability density function of a single random variable.

Units

[edit]

Common units include:

See also

[edit]

References

[edit]
  1. ^ Patt, D.H. (1958). "Findings and Recommendations on the Use of the Vibroscope". Textile Research Journal. 28 (8): 691–700. doi:10.1177/004051755802800809. S2CID 137534752.
  • ^ "ISO 1973:1995. Textile fibres -- Determination of linear density -- Gravimetric method and vibroscope method".
  • ^ Griffiths, David J. (1989), Introduction to Electrodynamics (2nd Edition), New Jersey: Prentice Hall, pp. 64, ISBN 0-13-481367-7

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Linear_density&oldid=1221360894"

    Categories: 
    Density
    Length
     



    This page was last edited on 29 April 2024, at 13:36 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki