Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Statement  



1.1  Case of finite modules  





1.2  Case of p-adic representations  







2 See also  





3 Notes  





4 References  














Local Tate duality






Svenska
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


InGalois cohomology, local Tate duality (or simply local duality) is a duality for Galois modules for the absolute Galois group of a non-archimedean local field. It is named after John Tate who first proved it. It shows that the dual of such a Galois module is the Tate twist of usual linear dual. This new dual is called the (local) Tate dual.

Local duality combined with Tate's local Euler characteristic formula provide a versatile set of tools for computing the Galois cohomology of local fields.

Statement[edit]

Let K be a non-archimedean local field, let Ks denote a separable closureofK, and let GK = Gal(Ks/K) be the absolute Galois group of K.

Case of finite modules[edit]

Denote by μ the Galois module of all roots of unityinKs. Given a finite GK-module A of order prime to the characteristicofK, the Tate dual of A is defined as

(i.e. it is the Tate twist of the usual dual A). Let Hi(KA) denote the group cohomologyofGK with coefficients in A. The theorem states that the pairing

given by the cup product sets up a duality between Hi(K, A) and H2−i(KA) for i = 0, 1, 2.[1] Since GK has cohomological dimension equal to two, the higher cohomology groups vanish.[2]

Case of p-adic representations[edit]

Let p be a prime number. Let Qp(1) denote the p-adic cyclotomic characterofGK (i.e. the Tate module of μ). A p-adic representationofGK is a continuous representation

where V is a finite-dimensional vector space over the p-adic numbers Qp and GL(V) denotes the group of invertible linear maps from V to itself.[3] The Tate dual of V is defined as

(i.e. it is the Tate twist of the usual dual V = Hom(V, Qp)). In this case, Hi(K, V) denotes the continuous group cohomologyofGK with coefficients in V. Local Tate duality applied to V says that the cup product induces a pairing

which is a duality between Hi(KV) and H2−i(KV ′) for i = 0, 1, 2.[4] Again, the higher cohomology groups vanish.

See also[edit]

Notes[edit]

  1. ^ Serre 2002, Theorem II.5.2
  • ^ Serre 2002, §II.4.3
  • ^ Some authors use the term p-adic representation to refer to more general Galois modules.
  • ^ Rubin 2000, Theorem 1.4.1
  • References[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Local_Tate_duality&oldid=1045235325"

    Categories: 
    Theorems in algebraic number theory
    Galois theory
    Duality theories
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 19 September 2021, at 15:09 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki