Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Inequalities  





3 Derivation  



3.1  Mean value theorem of differential calculus  





3.2  Integration  







4 Generalization  



4.1  Mean value theorem of differential calculus  





4.2  Integral  







5 Connection to other means  





6 See also  





7 References  














Logarithmic mean






Deutsch
فارسی
Français

עברית


Polski
Shqip
Suomi
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Logarithmic average)

Three-dimensional plot showing the values of the logarithmic mean.

Inmathematics, the logarithmic mean is a function of two non-negative numbers which is equal to their difference divided by the logarithm of their quotient. This calculation is applicable in engineering problems involving heat and mass transfer.

Definition

[edit]

The logarithmic mean is defined as:

for the positive numbers x, y.

Inequalities

[edit]

The logarithmic mean of two numbers is smaller than the arithmetic mean and the generalized mean with exponent greater than 1. However, it is larger than the geometric mean and the harmonic mean, respectively. The inequalities are strict unless both numbers are equal.

[1][2][3][4] Toyesh Prakash Sharma generalizes the arithmetic logarithmic geometric mean inequality for any n belongs to the whole number as

Now, for n = 0:

This is the arithmetic logarithmic geometric mean inequality. similarly, one can also obtain results by putting different values of n as below

For n = 1:

for the proof go through the bibliography.

Derivation

[edit]

Mean value theorem of differential calculus

[edit]

From the mean value theorem, there exists a value ξ in the interval between x and y where the derivative f ′ equals the slope of the secant line:

The logarithmic mean is obtained as the value of ξ by substituting ln for f and similarly for its corresponding derivative:

and solving for ξ:

Integration

[edit]

The logarithmic mean can also be interpreted as the area under an exponential curve.

The area interpretation allows the easy derivation of some basic properties of the logarithmic mean. Since the exponential function is monotonic, the integral over an interval of length 1 is bounded by x and y. The homogeneity of the integral operator is transferred to the mean operator, that is .

Two other useful integral representations areand

Generalization

[edit]

Mean value theorem of differential calculus

[edit]

One can generalize the mean to n + 1 variables by considering the mean value theorem for divided differences for the n-th derivative of the logarithm.

We obtain

where denotes a divided difference of the logarithm.

For n = 2 this leads to

Integral

[edit]

The integral interpretation can also be generalized to more variables, but it leads to a different result. Given the simplex with and an appropriate measure which assigns the simplex a volume of 1, we obtain

This can be simplified using divided differences of the exponential function to

.

Example n = 2:

Connection to other means

[edit]

See also

[edit]

References

[edit]
Citations
  1. ^ B. C. Carlson (1966). "Some inequalities for hypergeometric functions". Proc. Amer. Math. Soc. 17: 32–39. doi:10.1090/s0002-9939-1966-0188497-6.
  • ^ B. Ostle & H. L. Terwilliger (1957). "A comparison of two means". Proc. Montana Acad. Sci. 17: 69–70.
  • ^ Tung-Po Lin (1974). "The Power Mean and the Logarithmic Mean". The American Mathematical Monthly. 81 (8): 879–883. doi:10.1080/00029890.1974.11993684.
  • ^ Frank Burk (1987). "The Geometric, Logarithmic, and Arithmetic Mean Inequality". The American Mathematical Monthly. 94 (6): 527–528. doi:10.2307/2322844. JSTOR 2322844.
  • Bibliography

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Logarithmic_mean&oldid=1225118022"

    Categories: 
    Logarithms
    Means
    Hidden categories: 
    Articles with short description
    Short description with empty Wikidata description
    Articles needing additional references from April 2009
    All articles needing additional references
     



    This page was last edited on 22 May 2024, at 13:37 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki