Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  



1.1  Truth table  





1.2  Logical equivalences  







2 Alternative notations and names  





3 Properties  





4 Other Boolean operations in terms of the logical NOR  





5 Functional completeness  





6 See also  





7 References  





8 External links  














Logical NOR






العربية
Deutsch
Español
Esperanto
Euskara
فارسی
Français

Italiano
עברית
Македонски
Nederlands

Norsk bokmål
Polski
Română
Русский
Српски / srpski
Suomi
Svenska

Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
Wikifunctions
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Logical NOR
NOR
Venn diagram of Logical NOR
Definition
Truth table
Logic gate
Normal forms
Disjunctive
Conjunctive
Zhegalkin polynomial
Post's lattices
0-preservingno
1-preservingno
Monotoneno
Affineno
Self-dualno
  • t
  • e
  • InBoolean logic, logical NOR,[1] non-disjunction, or joint denial[1] is a truth-functional operator which produces a result that is the negation of logical or. That is, a sentence of the form (p NOR q) is true precisely when neither p nor q is true—i.e. when both p and q are false. It is logically equivalent to and , where the symbol signifies logical negation, signifies OR, and signifies AND.

    Non-disjunction is usually denoted as oror (prefix) or .

    As with its dual, the NAND operator (also known as the Sheffer stroke—symbolized as either , or), NOR can be used by itself, without any other logical operator, to constitute a logical formal system (making NOR functionally complete).

    The computer used in the spacecraft that first carried humans to the moon, the Apollo Guidance Computer, was constructed entirely using NOR gates with three inputs.[2]

    Definition[edit]

    The NOR operation is a logical operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both operands are false. In other words, it produces a value of false if and only if at least one operand is true.

    Truth table[edit]

    The truth tableof is as follows:

    FFT
    FTF
    TFF
    TTF

    Logical equivalences[edit]

    The logical NOR is the negation of the disjunction:

            
            

    Alternative notations and names[edit]

    Peirce is the first to show the functional completeness of non-disjunction while he doesn't publish his result.[3][4] Peirce used for non-conjunction and for non-disjunction (in fact, what Peirce himself used is and he didn't introduce while Peirce's editors made such disambiguated use).[4] Peirce called asampheck (from Ancient Greek ἀμφήκης, amphēkēs, "cutting both ways").[4]

    In 1911, Stamm [pl] was the first to publish a description of both non-conjunction (using , the Stamm hook), and non-disjunction (using , the Stamm star), and showed their functional completeness.[5][6] Note that most uses in logical notation of use this for negation.

    In 1913, Sheffer described non-disjunction and showed its functional completeness. Sheffer used for non-conjunction, and for non-disjunction.

    In 1935, Webb described non-disjunction for -valued logic, and use for the operator. So some people call it Webb operator,[7] Webb operation[8]orWebb function.[9]

    In 1940, Quine also described non-disjunction and use for the operator.[10] So some people call the operator Peirce arroworQuine dagger.

    In 1944, Church also described non-disjunction and use for the operator.[11]

    In 1954, Bocheński used in for non-disjunction in Polish notation.[12]

    Properties[edit]

    Logical NOR does not possess any of the five qualities (truth-preserving, false-preserving, linear, monotonic, self-dual) required to be absent from at least one member of a set of functionally complete operators. Thus, the set containing only NOR suffices as a complete set.

    Other Boolean operations in terms of the logical NOR[edit]

    NOR has the interesting feature that all other logical operators can be expressed by interlaced NOR operations. The logical NAND operator also has this ability.

    Expressed in terms of NOR , the usual operators of propositional logic are:

            
            
       
            
            
     
            
            
       
            
            

    Functional completeness[edit]

    The logical NOR, taken by itself, is a functionally complete set of connectives.[13] This can be proved by first showing, with a truth table, that is truth-functionally equivalent to .[14] Then, since is truth-functionally equivalent to ,[14] and is equivalent to ,[14] the logical NOR suffices to define the set of connectives ,[14] which is shown to be truth-functionally complete by the Disjunctive Normal Form Theorem.[14]

    See also[edit]

    References[edit]

    1. ^ a b Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London ; New York: Routledge. p. 43. ISBN 978-0-415-13342-5.
  • ^ Hall, Eldon C. (1996). Journey to the Moon: The History of the Apollo Guidance Computer. Reston, Virginia, USA: American Institute of Aeronautics and Astronautics. p. 196. ISBN 1-56347-185-X.
  • ^ Peirce, C. S. (1933) [1880]. "A Boolian Algebra with One Constant". In Hartshorne, C.; Weiss, P. (eds.). Collected Papers of Charles Sanders Peirce, Volume IV The Simplest Mathematics. Massachusetts: Harvard University Press. pp. 13–18.
  • ^ a b c Peirce, C. S. (1933) [1902]. "The Simplest Mathematics". In Hartshorne, C.; Weiss, P. (eds.). Collected Papers of Charles Sanders Peirce, Volume IV The Simplest Mathematics. Massachusetts: Harvard University Press. pp. 189–262.
  • ^ Stamm, Edward Bronisław [in Polish] (1911). "Beitrag zur Algebra der Logik". Monatshefte für Mathematik und Physik (in German). 22 (1): 137–149. doi:10.1007/BF01742795. S2CID 119816758.
  • ^ Zach, R. (2023-02-18). "Sheffer stroke before Sheffer: Edward Stamm". Retrieved 2023-07-02.
  • ^ Webb, Donald Loomis (May 1935). "Generation of any n-valued logic by one binary operation". Proceedings of the National Academy of Sciences. 21 (5). USA: National Academy of Sciences: 252. Bibcode:1935PNAS...21..252W. doi:10.1073/pnas.21.5.252. PMC 1076579.
  • ^ Vasyukevich, Vadim O. (2011). "1.10 Venjunctive Properties (Basic Formulae)". Written at Riga, Latvia. Asynchronous Operators of Sequential Logic: Venjunction & Sequention — Digital Circuits Analysis and Design. Lecture Notes in Electrical Engineering (LNEE). Vol. 101 (1st ed.). Berlin / Heidelberg, Germany: Springer-Verlag. p. 20. doi:10.1007/978-3-642-21611-4. ISBN 978-3-642-21610-7. ISSN 1876-1100. LCCN 2011929655. p. 20: Historical background […] Logical operator NOR named Peirce arrow and also known as Webb-operation. (xiii+1+123+7 pages) (NB. The back cover of this book erroneously states volume 4, whereas it actually is volume 101.)
  • ^ Freimann, Michael; Renfro, Dave L.; Webb, Norman (2018-05-24) [2017-02-10]. "Who is Donald L. Webb?". History of Science and Mathematics. Stack Exchange. Archived from the original on 2023-05-18. Retrieved 2023-05-18.
  • ^ Quine, W. V (1981) [1940]. Mathematical Logic (Revised ed.). Cambridge, London, New York, New Rochelle, Melbourne and Sydney: Harvard University Press. p. 45.
  • ^ Church, A. (1996) [1944]. Introduction to Mathematical Logic. New Jersey: Princeton University Press. p. 37.
  • ^ Bocheński, J. M. (1954). Précis de logique mathématique (in French). Netherlands: F. G. Kroonder, Bussum, Pays-Bas. p. 11.
  • ^ Smullyan, Raymond M. (1995). First-order logic. New York: Dover. pp. 5, 11, 14. ISBN 978-0-486-68370-6.
  • ^ a b c d e Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London ; New York: Routledge. pp. 41–43. ISBN 978-0-415-13342-5.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Logical_NOR&oldid=1219440013"

    Categories: 
    Logical connectives
    Charles Sanders Peirce
    Hidden categories: 
    CS1 German-language sources (de)
    CS1 location test
    CS1 French-language sources (fr)
    Articles with short description
    Short description matches Wikidata
    Use dmy dates from May 2023
    Use list-defined references from May 2023
    Articles containing Ancient Greek (to 1453)-language text
    Commons category link from Wikidata
    Pages that use a deprecated format of the math tags
     



    This page was last edited on 17 April 2024, at 19:29 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki