Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Statement  



1.1  Extended version for nondecreasing functions  





1.2  The uniformly randomized Markov's inequality  







2 Proofs  



2.1  Intuition  





2.2  Probability-theoretic proof  





2.3  Measure-theoretic proof  





2.4  Discrete case  







3 Corollaries  



3.1  Chebyshev's inequality  





3.2  Other corollaries  







4 Examples  





5 See also  





6 References  





7 External links  














Markov's inequality






العربية
Català
Deutsch
Ελληνικά
Español
Euskara
فارسی
Français

Italiano
עברית
Magyar
Македонски
Монгол
Nederlands

Norsk bokmål
Polski
Русский
Shqip
Suomi
Svenska

Українська
اردو
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Markov's inequality gives an upper bound for the measure of the set (indicated in red) where exceeds a given level . The bound combines the level with the average value of .

Inprobability theory, Markov's inequality gives an upper bound on the probability that a non-negative random variable is greater than or equal to some positive constant. Markov's inequality is tight in the sense that for each chosen positive constant, there exists a random variable such that the inequality is in fact an equality.[1]

It is named after the Russian mathematician Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev (Markov's teacher), and many sources, especially in analysis, refer to it as Chebyshev's inequality (sometimes, calling it the first Chebyshev inequality, while referring to Chebyshev's inequality as the second Chebyshev inequality) or Bienaymé's inequality.

Markov's inequality (and other similar inequalities) relate probabilities to expectations, and provide (frequently loose but still useful) bounds for the cumulative distribution function of a random variable. Markov's inequality can also be used to upper bound the expectation of a non-negative random variable in terms of its distribution function.

Statement[edit]

IfX is a nonnegative random variable and a > 0, then the probability that X is at least a is at most the expectation of X divided by a:[1]

When , we can take for to rewrite the previous inequality as

In the language of measure theory, Markov's inequality states that if (X, Σ, μ) is a measure space, is a measurable extended real-valued function, and ε > 0, then

This measure-theoretic definition is sometimes referred to as Chebyshev's inequality.[2]


Extended version for nondecreasing functions[edit]

Ifφ is a nondecreasing nonnegative function, X is a (not necessarily nonnegative) random variable, and φ(a) > 0, then[3]

An immediate corollary, using higher moments of X supported on values larger than 0, is


The uniformly randomized Markov's inequality[edit]

IfX is a nonnegative random variable and a > 0, and U is a uniformly distributed random variable on that is independent of X, then[4]

Since U is almost surely smaller than one, this bound is strictly stronger than Markov's inequality. Remarkably, U cannot be replaced by any constant smaller than one, meaning that deterministic improvements to Markov's inequality cannot exist in general. While Markov's inequality holds with equality for distributions supported on , the above randomized variant holds with equality for any distribution that is bounded on .


Proofs[edit]

We separate the case in which the measure space is a probability space from the more general case because the probability case is more accessible for the general reader.

Intuition[edit]

where is larger than or equal to 0 as the random variable is non-negative and is larger than or equal to because the conditional expectation only takes into account of values larger than or equal to which r.v. can take.

Hence intuitively , which directly leads to .

Probability-theoretic proof[edit]

Method 1: From the definition of expectation:

However, X is a non-negative random variable thus,

From this we can derive,

From here, dividing through by allows us to see that

Method 2: For any event , let be the indicator random variable of , that is, if occurs and otherwise.

Using this notation, we have if the event occurs, and if. Then, given ,

which is clear if we consider the two possible values of . If , then , and so . Otherwise, we have , for which and so .

Since is a monotonically increasing function, taking expectation of both sides of an inequality cannot reverse it. Therefore,

Now, using linearity of expectations, the left side of this inequality is the same as

Thus we have

and since a > 0, we can divide both sides by a.

Measure-theoretic proof[edit]

We may assume that the function is non-negative, since only its absolute value enters in the equation. Now, consider the real-valued function sonX given by

Then . By the definition of the Lebesgue integral

and since , both sides can be divided by , obtaining

Discrete case[edit]

We now provide a proof for the special case when is a discrete random variable which only takes on non-negative integer values.

Let be a positive integer. By definition

Dividing by yields the desired result.

Corollaries[edit]

Chebyshev's inequality[edit]

Chebyshev's inequality uses the variance to bound the probability that a random variable deviates far from the mean. Specifically,

for any a > 0.[3] Here Var(X) is the variance of X, defined as:

Chebyshev's inequality follows from Markov's inequality by considering the random variable

and the constant for which Markov's inequality reads

This argument can be summarized (where "MI" indicates use of Markov's inequality):

Other corollaries[edit]

  1. The "monotonic" result can be demonstrated by:
  2. The result that, for a nonnegative random variable X, the quantile functionofX satisfies:
    the proof using
  3. Let be a self-adjoint matrix-valued random variable and . Then
    which can be proved similarly.[5]

Examples[edit]

Assuming no income is negative, Markov's inequality shows that no more than 10% (1/10) of the population can have more than 10 times the average income.[6]

Another simple example is as follows: Andrew makes 4 mistakes on average on a random test his Statistics course tests. The best upper bound on the probability that Andrew will do at least 10 mistakes is 0.4 as Note that Andrew might do exactly 10 mistakes with probability 0.4 and make no mistakes with probability 0.6; the expectation is exactly 4 mistakes.

See also[edit]

References[edit]

  1. ^ a b Huber, Mark (2019-11-26). "Halving the Bounds for the Markov, Chebyshev, and Chernoff Inequalities Using Smoothing". The American Mathematical Monthly. 126 (10): 915–927. arXiv:1803.06361. doi:10.1080/00029890.2019.1656484. ISSN 0002-9890.
  • ^ Stein, E. M.; Shakarchi, R. (2005), Real Analysis, Princeton Lectures in Analysis, vol. 3 (1st ed.), p. 91.
  • ^ a b Lin, Zhengyan (2010). Probability inequalities. Springer. p. 52.
  • ^ Ramdas, Aaditya; Manole, Tudor, Randomized and Exchangeable Improvements of Markov's, Chebyshev's and Chernoff's Inequalities, arXiv:2304.02611.
  • ^ Tu, Stephen (2017-11-04). "Markov's Inequality for Matrices". Retrieved May 27, 2024.
  • ^ Ross, Kevin. 5.4 Probability inequalitlies | An Introduction to Probability and Simulation.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Markov%27s_inequality&oldid=1226010575"

    Category: 
    Probabilistic inequalities
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from September 2010
    All articles needing additional references
    Articles containing proofs
     



    This page was last edited on 28 May 2024, at 01:50 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki