Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Introduction  





2 History  





3 Definition  





4 Alternative formulations  





5 Strong Markov property  





6 In forecasting  





7 Examples  





8 See also  





9 References  














Markov property






Afrikaans
العربية
Български
Català
Deutsch
Español
فارسی
Français

Hrvatski
Italiano

Polski
Português
Русский
Sunda
Svenska
Українська
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


A single realisation of three-dimensional Brownian motion for times 0 ≤ t ≤ 2. Brownian motion has the Markov property, as the displacement of the particle does not depend on its past displacements.

Inprobability theory and statistics, the term Markov property refers to the memoryless property of a stochastic process, which means that its future evolution is independent of its history. It is named after the Russian mathematician Andrey Markov.[1] The term strong Markov property is similar to the Markov property, except that the meaning of "present" is defined in terms of a random variable known as a stopping time.

The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model.

AMarkov random field extends this property to two or more dimensions or to random variables defined for an interconnected network of items.[2] An example of a model for such a field is the Ising model.

A discrete-time stochastic process satisfying the Markov property is known as a Markov chain.

Introduction[edit]

A stochastic process has the Markov property if the conditional probability distribution of future states of the process (conditional on both past and present values) depends only upon the present state; that is, given the present, the future does not depend on the past. A process with this property is said to be MarkovorMarkovian and known as a Markov process. Two famous classes of Markov process are the Markov chain and Brownian motion.

Note that there is a subtle, often overlooked and very important point that is often missed in the plain English statement of the definition. Namely that the statespace of the process is constant through time. The conditional description involves a fixed "bandwidth". For example, without this restriction we could augment any process to one which includes the complete history from a given initial condition and it would be made to be Markovian. But the state space would be of increasing dimensionality over time and does not meet the definition.

History[edit]

Definition[edit]

Let be a probability space with a filtration , for some (totally ordered) index set ; and let be a measurable space. A -valued stochastic process adapted to the filtration is said to possess the Markov property if, for each and each with ,

[3]

In the case where is a discrete set with the discrete sigma algebra and , this can be reformulated as follows:

Alternative formulations[edit]

Alternatively, the Markov property can be formulated as follows.

for all and bounded and measurable.[4]

Strong Markov property[edit]

Suppose that is a stochastic process on a probability space with natural filtration . Then for any stopping time on, we can define

.

Then is said to have the strong Markov property if, for each stopping time , conditional on the event , we have that for each , is independent of given .

The strong Markov property implies the ordinary Markov property since by taking the stopping time , the ordinary Markov property can be deduced.[5]

In forecasting[edit]

In the fields of predictive modelling and probabilistic forecasting, the Markov property is considered desirable since it may enable the reasoning and resolution of the problem that otherwise would not be possible to be resolved because of its intractability. Such a model is known as a Markov model.

Examples[edit]

Assume that an urn contains two red balls and one green ball. One ball was drawn yesterday, one ball was drawn today, and the final ball will be drawn tomorrow. All of the draws are "without replacement".

Suppose you know that today's ball was red, but you have no information about yesterday's ball. The chance that tomorrow's ball will be red is 1/2. That's because the only two remaining outcomes for this random experiment are:

Day Outcome 1 Outcome 2
Yesterday Red Green
Today Red Red
Tomorrow Green Red

On the other hand, if you know that both today and yesterday's balls were red, then you are guaranteed to get a green ball tomorrow.

This discrepancy shows that the probability distribution for tomorrow's color depends not only on the present value, but is also affected by information about the past. This stochastic process of observed colors doesn't have the Markov property. Using the same experiment above, if sampling "without replacement" is changed to sampling "with replacement," the process of observed colors will have the Markov property.[6]

An application of the Markov property in a generalized form is in Markov chain Monte Carlo computations in the context of Bayesian statistics.

See also[edit]

References[edit]

  1. ^ Markov, A. A. (1954). Theory of Algorithms. [Translated by Jacques J. Schorr-Kon and PST staff] Imprint Moscow, Academy of Sciences of the USSR, 1954 [Jerusalem, Israel Program for Scientific Translations, 1961; available from Office of Technical Services, United States Department of Commerce] Added t.p. in Russian Translation of Works of the Mathematical Institute, Academy of Sciences of the USSR, v. 42. Original title: Teoriya algorifmov. [QA248.M2943 Dartmouth College library. U.S. Dept. of Commerce, Office of Technical Services, number OTS 60-51085.]
  • ^ Dodge, Yadolah. (2006) The Oxford Dictionary of Statistical Terms, Oxford University Press. ISBN 0-19-850994-4
  • ^ Durrett, Rick. Probability: Theory and Examples. Fourth Edition. Cambridge University Press, 2010.
  • ^ Øksendal, Bernt K. (2003). Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin. ISBN 3-540-04758-1.
  • ^ Ethier, Stewart N. and Kurtz, Thomas G. Markov Processes: Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics, 1986, p. 158.
  • ^ "Example of a stochastic process which does not have the Markov property". Stack Exchange. Retrieved 2020-07-07.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Markov_property&oldid=1217007815"

    Categories: 
    Markov models
    Markov processes
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 3 April 2024, at 07:29 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki