Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Cementation  





2 References  





3 External links  














Matrix (geology)






العربية
Azərbaycanca
Català
Čeština
Deutsch
Español
Esperanto
Euskara
فارسی
Français

Bahasa Indonesia
Italiano
עברית
Nederlands

Norsk bokmål
Norsk nynorsk
Português
Simple English
Svenska

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Orthoclase phenocrysts within a finer-grained matrix of a granite porphyry

The matrixorgroundmass of a rock is the finer-grained mass of material in which larger grains, crystals, or clasts are embedded.

The matrix of an igneous rock consists of finer-grained, often microscopic, crystals in which larger crystals, called phenocrysts, are embedded. This porphyritic texture is indicative of multi-stage cooling of magma. For example, porphyritic andesite will have large phenocrysts of plagioclase in a fine-grained matrix. Also in South Africa, diamonds are often mined from a matrix of weathered clay-like rock (kimberlite) called "yellow ground".

The matrix of sedimentary rocks is finer-grained sedimentary material, such as clay or silt, in which larger grains or clasts are embedded. It is also used to describe the rock material in which a fossil is embedded.

Cementation[edit]

All sediments are at first in an incoherent condition (e.g. sands, clays and gravels, beds of shells), and they may remain in this state for an indefinite period. Millions of years have elapsed since some of the early Tertiary strata gathered on the ocean floor, yet they are quite friable (e.g. the London Clay) and differ little from many recent accumulations. There are few exceptions to the rule that with increasing age sedimentary rocks become more and more indurated. Generally, the older the strata the more likely it is that they will have the firm consistency generally implied in the term "rock".[1]

The pressure of newer sediments on underlying masses is apparently one cause of this hardening, though not in itself a very powerful one. More efficiency is generally ascribed to the action of percolating water, which takes up water-soluble materials and then redeposits them in pores and cavities. This operation is probably accelerated by the increased pressure produced by superincumbent masses, and to some extent also by the rise of temperature which inevitably takes place in rocks buried to some depth beneath the surface. The rise of temperature, however, may be only a tiny increase; we know more than one instance of sedimentary deposits which have been buried beneath four or five miles of similar strata (e.g. parts of the Old Red Sandstone), and yet no perceptible difference is apparent between beds of similar composition at the top of the series and near its base. Should the deposits have been truly "baked", that is, subject to a large increase in temperature, then differences would be evident.[1]

The redeposited cementing material is most commonly calcareous or siliceous. Limestones, which were originally a loose accumulation of shells, corals, etc., become compacted into firm rock in this manner; and the process often takes place with surprising ease, as for example, in the deeper parts of coral reefs, or even in wind-blown masses of shelly sand exposed merely to the action of rain. The cementing substance may be regularly deposited in crystalline continuity on the original grains, where these were crystalline, and even in sandstones (such as Kentish rag), a crystalline matrix of calcite often envelops the sand grains. The change of aragonite to calcite and of calcite to dolomite, by forming new crystalline masses in the interior of the rock, usually also accelerates consolidations. Silica is less easily soluble in ordinary waters, but even this ingredient of rocks is dissolved and redeposited with great frequency. Many sandstones are held together by an infinitesimal amount of colloid or cryptocrystalline silica; when freshly dug from the quarry they are soft and easily trimmed, but after exposure to the air for some time they become much harder, as their siliceous cement sets and passes into a rigid condition. Others contain fine scales of kaolin or of mica. Argillaceous materials may be compacted by mere pressure, like graphite and other scaly minerals.[1]

References[edit]

  1. ^ a b c  One or more of the preceding sentences incorporates text from a publication now in the public domainFlett, John Smith (1911). "Petrology". In Chisholm, Hugh (ed.). Encyclopædia Britannica. Vol. 21 (11th ed.). Cambridge University Press. p. 332.

External links[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Matrix_(geology)&oldid=1221718456"

Category: 
Petrology
Hidden categories: 
Wikipedia articles incorporating a citation from the 1911 Encyclopaedia Britannica with Wikisource reference
Wikipedia articles incorporating text from the 1911 Encyclopædia Britannica
Articles with short description
Short description is different from Wikidata
Commons category link is on Wikidata
Articles with GND identifiers
 



This page was last edited on 1 May 2024, at 16:18 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki