Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Motivating example  





2 Properties  





3 See also  





4 References  



4.1  Citations  





4.2  General references  
















Matrix similarity






العربية
Català
Čeština
Deutsch
Ελληνικά
Español
Français

Hrvatski
Bahasa Indonesia
Italiano
עברית
Magyar
Nederlands

Олык марий
Polski
Português
Română
Русский
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
ி
Українська
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inlinear algebra, two n-by-n matrices A and B are called similar if there exists an invertible n-by-n matrix P such that Similar matrices represent the same linear map under two (possibly) different bases, with P being the change of basis matrix.[1][2]

A transformation AP−1AP is called a similarity transformationorconjugation of the matrix A. In the general linear group, similarity is therefore the same as conjugacy, and similar matrices are also called conjugate; however, in a given subgroup H of the general linear group, the notion of conjugacy may be more restrictive than similarity, since it requires that P be chosen to lie in H.

Motivating example

[edit]

When defining a linear transformation, it can be the case that a change of basis can result in a simpler form of the same transformation. For example, the matrix representing a rotation in R3 when the axis of rotation is not aligned with the coordinate axis can be complicated to compute. If the axis of rotation were aligned with the positive z-axis, then it would simply be where is the angle of rotation. In the new coordinate system, the transformation would be written as where x' and y' are respectively the original and transformed vectors in a new basis containing a vector parallel to the axis of rotation. In the original basis, the transform would be written as where vectors x and y and the unknown transform matrix T are in the original basis. To write T in terms of the simpler matrix, we use the change-of-basis matrix P that transforms x and yas and :

Thus, the matrix in the original basis, , is given by . The transform in the original basis is found to be the product of three easy-to-derive matrices. In effect, the similarity transform operates in three steps: change to a new basis (P), perform the simple transformation (S), and change back to the old basis (P−1).

Properties

[edit]

Similarity is an equivalence relation on the space of square matrices.

Because matrices are similar if and only if they represent the same linear operator with respect to (possibly) different bases, similar matrices share all properties of their shared underlying operator:

Because of this, for a given matrix A, one is interested in finding a simple "normal form" B which is similar to A—the study of A then reduces to the study of the simpler matrix B. For example, A is called diagonalizable if it is similar to a diagonal matrix. Not all matrices are diagonalizable, but at least over the complex numbers (or any algebraically closed field), every matrix is similar to a matrix in Jordan form. Neither of these forms is unique (diagonal entries or Jordan blocks may be permuted) so they are not really normal forms; moreover their determination depends on being able to factor the minimal or characteristic polynomial of A (equivalently to find its eigenvalues). The rational canonical form does not have these drawbacks: it exists over any field, is truly unique, and it can be computed using only arithmetic operations in the field; A and B are similar if and only if they have the same rational canonical form. The rational canonical form is determined by the elementary divisors of A; these can be immediately read off from a matrix in Jordan form, but they can also be determined directly for any matrix by computing the Smith normal form, over the ring of polynomials, of the matrix (with polynomial entries) XInA (the same one whose determinant defines the characteristic polynomial). Note that this Smith normal form is not a normal form of A itself; moreover it is not similar to XInA either, but obtained from the latter by left and right multiplications by different invertible matrices (with polynomial entries).

Similarity of matrices does not depend on the base field: if L is a field containing K as a subfield, and A and B are two matrices over K, then A and B are similar as matrices over K if and only if they are similar as matrices over L. This is so because the rational canonical form over K is also the rational canonical form over L. This means that one may use Jordan forms that only exist over a larger field to determine whether the given matrices are similar.

In the definition of similarity, if the matrix P can be chosen to be a permutation matrix then A and B are permutation-similar;ifP can be chosen to be a unitary matrix then A and B are unitarily equivalent. The spectral theorem says that every normal matrix is unitarily equivalent to some diagonal matrix. Specht's theorem states that two matrices are unitarily equivalent if and only if they satisfy certain trace equalities.

See also

[edit]

References

[edit]

Citations

[edit]
  1. ^ Beauregard, Raymond A.; Fraleigh, John B. (1973). A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields. Boston: Houghton Mifflin Co. pp. 240–243. ISBN 0-395-14017-X.
  • ^ Bronson, Richard (1970), Matrix Methods: An Introduction, New York: Academic Press, pp. 176–178, LCCN 70097490
  • General references

    [edit]
    • Horn, Roger A.; Johnson, Charles R. (1985). Matrix Analysis. Cambridge University Press. ISBN 0-521-38632-2. (Similarity is discussed many places, starting at page 44.)

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Matrix_similarity&oldid=1218301697"

    Categories: 
    Matrices
    Equivalence (mathematics)
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 10 April 2024, at 22:27 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki