Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 See also  





2 References  














Metabolic trapping






العربية
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Metabolic trapping refers to a localization mechanism of synthesized radiocompounds in the human body. It can be defined as the intracellular accumulation of a radioactive tracer based on the relative metabolic activity of the body's tissues.[1] It is a basic principle of the design of radiopharmaceuticalsasmetabolic probes[2] for functional studies or tumor location.[3]

Metabolic trapping is the mechanism underlying the (PET) scan,[4] an effective tool for detecting tumors, as there is a greater uptake of the target molecule by tumor tissue than by normal tissue.

In order to use it as a diagnostic tool in medicine, scientists have studied the trapping of radioactive molecules within different tissues throughout the body. In 1978, Gallagher et al. studied glucose tagged with Fluorine-18 (F-18) to see how it metabolized in the tissues of different organs. This group studied how long it took the lungs, liver, kidneys, heart, and brain to metabolize radioactive glucose. They found the molecule distributed uniformly, and then, after two hours, only the heart and the brain had significant levels of radioactivity from the F-18 due to metabolic trapping. This trapping occurred because once the glucose was pulled into the cells, the glucose was phosphorylated to cause the concentration of glucose in the cell to appear lower than it is, which then promotes the transport of more glucose. This phosphorylation of the radioactive glucose caused the metabolic trapping in the heart and the brain. The lungs, liver, and kidneys did not experience metabolic trapping, and the radioactive glucose that was not trapped was excreted in the urine. F-18 radiolabeled glucose did not get collected by the kidneys and cycled back into the system, as it would do for normal glucose. This suggests that the active transporter requires the hydroxyl (-OH) group found on the C-2 position of the sugar, where the F-18 atom was placed. Without the active transport, the radiolabeled glucose that was not trapped was then excreted as waste instead of being phosphorylated in the cell.[5]

A 2001 study of metabolic trapping used choline derivatives, which were synthesized using F-18, to label prostate cancer. The experiments were conducted first in mice and then in human patients. Choline (CH) and choline radiolabeled with F-18 (FCH) were both found to primarily migrate to the kidneys and liver in their experiment. This is different from the earlier experiment with glucose due to the difference in mechanism and metabolic need of glucose versus choline in the body. Phosphorylation was again found to be responsible for the trapping of the tracer in the tissues.[6]

See also

[edit]

References

[edit]
  1. ^ Fowler, J.; Logan, J.; Volkow, N. D.; Wang, G. J.; MacGregor, R. R.; Ding, Y. S. (2002). "Monoamine oxidase: Radiotracer development and human studies". Methods. 27 (3): 263–277. doi:10.1016/S1046-2023(02)00083-X. PMID 12183115.
  • ^ probe in biochemistry is: Any group of atoms or molecules radioactively labeled in order to study a given molecule or other structure
  • ^ . Gallagher, Brian M and et al. Metabolic Trapping as a Principle of Radiopharmaceutical Design: Some Factors Responsible for the Biodistribution of [18F] 2-Deoxy-2-Fluoro-D-Glucose The Journal of Nuclear Medicine 19:1154-1161,1978
  • ^ (Miele, E.; Spinelli, G. P.; Tomao, F.; Zullo, A.; De Marinis, F.; Pasciuti, G.; Rossi, L.; Zoratto, F.; Tomao, S. Positron Emission Tomography (PET) radiotracers in oncology–utility of 18F-Fluoro-deoxy-glucose (FDG)-PET in the management of patients with non-small-cell lung cancer (NSCLC). Journal of Experimental & Clinical Cancer Research 2008, 27, 52.)
  • ^ . Gallagher, Brian M and et al. Metabolic Trapping as a Principle of Radiopharmaceutical Design: Some Factors Responsible for the Biodistribution of [18F] 2-Deoxy-2-Fluoro-D-Glucose The Journal of Nuclear Medicine 19:1154-1161,1978
  • ^ DeGrado, T. R.; Coleman, R. E.; Wang, S.; Baldwin, S. W.; Orr, M. D.; Robertson, C. N.; Polascik, T. J.; Price, D. T. Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res. 2001, 61, 110-117.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Metabolic_trapping&oldid=1054273782"

    Categories: 
    Medicinal radiochemistry
    Metabolism
    Hidden categories: 
    Wikipedia articles that are too technical from September 2015
    All articles that are too technical
     



    This page was last edited on 9 November 2021, at 02:23 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki