Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Method  



1.1  Setting  





1.2  Procedure  





1.3  Theorem by ChesterFriedmanUrsell  







2 Literature  





3 References  














Method of ChesterFriedmanUrsell






Deutsch
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inasymptotic analysis, the method of Chester–Friedman–Ursell is a technique to find asymptotic expansions for contour integrals. It was developed as an extension of the steepest descent method for getting uniform asymptotic expansions in the case of coalescing saddle points.[1] The method was published in 1957 by Clive R. Chester, Bernard Friedman and Fritz Ursell.[2]

Method[edit]

Setting[edit]

We study integrals of the form

where is a contour and

Suppose we have two saddle points of with multiplicity that depend on a parameter . If now an exists, such that both saddle points coalescent to a new saddle point with multiplicity , then the steepest descent method no longer gives uniform asymptotic expansions.

Procedure[edit]

Suppose there are two simple saddle points and of and suppose that they coalescent in the point .

We start with the cubic transformation of, this means we introduce a new complex variable and write

where the coefficients and will be determined later.

We have

so the cubic transformation will be analytic and injective only if and are neither nor . Therefore and must correspond to the zeros of , i.e. with and . This gives the following system of equations

we have to solve to determine and . A theorem by Chester–Friedman–Ursell (see below) says now, that the cubic transform is analytic and injective in a local neighbourhood around the critical point .

After the transformation the integral becomes

where is the new contour for and

The function is analytic at for and also at the coalescing point for . Here ends the method and one can see the integral representation of the complex Airy function.

Chester–Friedman–Ursell note to write not as a single power series but instead as

to really get asymptotic expansions.

Theorem by Chester–Friedman–Ursell[edit]

Let and be as above. The cubic transformation

with the above derived values for and , such that corresponds to , has only one branch point , so that for all in a local neighborhood of the transformation is analytic and injective.

Literature[edit]

References[edit]

  1. ^ Olver, Frank W. J. (1997). Asymptotics and Special Functions. A K Peters/CRC Press. p. 351. doi:10.1201/9781439864548.
  • ^ Chester, Clive R.; Friedman, Bernard; Ursell, Fritz (1957). "An extension of the method of steepest descents". Mathematical Proceedings of the Cambridge Philosophical Society. 53 (3). Cambridge University Press. doi:10.1017/S0305004100032655.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Method_of_Chester–Friedman–Ursell&oldid=1183923970"

    Category: 
    Asymptotic analysis
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 7 November 2023, at 09:01 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki