Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Application in traditional calendars  



1.1  Hebrew calendar  





1.2  Polynesia  





1.3  Tidal Epoch  







2 Mathematical basis  





3 See also  





4 Notes  





5 References  





6 External links  














Metonic cycle






العربية
Беларуская
Български
Català
Deutsch
Ελληνικά
Español
فارسی
Français
Galego

Հայերեն
Igbo
Bahasa Indonesia
Italiano
עברית

Magyar
Malagasy
Nederlands

Norsk bokmål
Norsk nynorsk
Polski
Português
Русский
Shqip
Simple English
Slovenčina
Srpskohrvatski / српскохрватски
Suomi
Svenska

Türkçe
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Depiction of the 19 years of the Metonic cycle as a wheel, with the Julian date of the Easter New Moon, from a 9th-century computistic manuscript made in St. Emmeram's Abbey (Clm 14456, fol. 71r)
For example, by the 19-year Metonic cycle, the full moon repeats on or near Christmas between 1711 and 2300.[1][2] A small horizontal libration is visible comparing their appearances. A red color shows full moons that are also lunar eclipses.

The Metonic cycleorenneadecaeteris (from Ancient Greek: ἐννεακαιδεκαετηρίς, from ἐννεακαίδεκα, "nineteen") is a period of almost exactly 19 years after which the lunar phases recur at the same time of the year. The recurrence is not perfect, and by precise observation the Metonic cycle defined as 235 synodic months is just 2 hours, 4 minutes and 58 seconds longer than 19 tropical years. Meton of Athens, in the 5th century BC, judged the cycle to be a whole number of days, 6,940.[3] Using these whole numbers facilitates the construction of a lunisolar calendar.

A tropical year (about 365.24 days) is longer than 12 lunar months (about 354.36 days) and shorter than 13 of them (about 383.90 days). In a Metonic calendar (a type of lunisolar calendar), there are twelve years of 12 lunar months and seven years of 13 lunar months.

Application in traditional calendars[edit]

In the Babylonian and Hebrew lunisolar calendars, the years 3, 6, 8, 11, 14, 17, and 19 are the long (13-month) years of the Metonic cycle. This cycle forms the basis of the Greek and Hebrew calendars. A 19-year cycle is used for the computation of the date of Easter each year.

The Babylonians applied the 19-year cycle from the late sixth century BC.[4]

According to Livy, the second king of Rome, Numa Pompilius (reigned 715–673 BC), inserted intercalary months in such a way that "in the twentieth year the days should fall in with the same position of the sun from which they had started".[5] As "the twentieth year" takes place nineteen years after "the first year", this seems to indicate that the Metonic cycle was applied to Numa's calendar.

Diodorus Siculus reports that Apollo is said to have visited the Hyperboreans once every 19 years.[6]

The Metonic cycle has been implemented in the Antikythera mechanism which offers unexpected evidence for the popularity of the calendar based on it.[7]

The (19-year) Metonic cycle is a lunisolar cycle, as is the (76-year) Callippic cycle.[8] An important example of an application of the Metonic cycle in the Julian calendar is the 19-year lunar cycle insofar as provided with a Metonic structure.[9] In the following century, Callippus developed the Callippic cycle of four 19-year periods for a 76-year cycle with a mean year of exactly 365.25 days.

Around AD 260 the Alexandrian computist Anatolius, who became bishop of Laodicea in AD 268, was the first to devise a method for determining the date of Easter Sunday.[10] However, it was some later, somewhat different, version of the Metonic 19-year lunar cycle which, as the basic structure of Dionysius Exiguus' and also of Bede's Easter table, would ultimately prevail throughout Christendom,[11] at least until in the year 1582, when the Gregorian calendar was introduced.

The Coligny calendar is a Celtic lunisolar calendar using the Metonic cycle. The bronze plaque on which it was found dates from c. AD 200, but the internal evidence points to the calendar itself being several centuries older, created in the Iron Age.

The Runic calendar is a perpetual calendar based on the 19-year-long Metonic cycle. It is also known as a Rune staff or Runic Almanac. This calendar does not rely on knowledge of the duration of the tropical year or of the occurrence of leap years. It is set at the beginning of each year by observing the first full moon after the winter solstice. The oldest one known, and the only one from the Middle Ages, is the Nyköping staff, which is believed to date from the 13th century.

The Bahá'í calendar, established during the middle of the 19th century, is also based on cycles of 19 solar years.

Hebrew calendar[edit]

ASmall Maḥzor (Hebrew מחזור, pronounced [maχˈzor], meaning "cycle") is a 19-year cycle in the lunisolar calendar system used by the Jewish people. It is similar to, but slightly different in usage from, the Greek Metonic cycle (being based on a month of 29+1375325920 days, giving a cycle of 6939+35755184 ≈ 6939.69 days[12]), and likely derived from or alongside the much earlier Babylonian calendar.[13]

Three ancient civilizations (Babylonia, China and Israel) used lunisolar calendars and knew of the rule of the intercalation from as early as 2000 BC. Whether or not the correlation indicates cause-and-effect relationship is an open question.[14][15][verification needed]

Polynesia[edit]

It is possible that the Polynesian kilo-hoku (astronomers) discovered the Metonic cycle in the same way Meton had, by trying to make the month fit the year.[16]

Tidal Epoch[edit]

Sea level calculations also depend on the Metonic cycle.

https://tidesandcurrents.noaa.gov/publications/Understanding_Sea_Level_Change.pdf

Mathematical basis[edit]

The Metonic cycle is the most accurate cycle of time (in a timespan of less than 100 years) for synchronizing the tropical year and the lunar month (synodic month), when the method of synchronizing is the intercalation of a thirteenth lunar month in a calendar year from time to time.[17] The traditional lunar year of 12 synodic months is about 354 days, approximately eleven days short of the solar year. Thus, every 2 to 3 years there is a discrepancy of 22 to 33 days, or a full synodic month. For example, if it happened some day that the winter solstice and a new moon coincided, it would take 19 tropical years for the coincidence to recur. The mathematical logic is this:

That duration is almost the same as 235 synodic months:

Thus the algorithm is correct to 0.087 days (2 hours, 5 minutes and 16 seconds).

For a lunisolar calendar to 'catch up' to this discrepancy and thus maintain seasonal consistency, seven intercalary months are added (one at a time), at intervals of every 2–3 years during the course of 19 solar years. Thus twelve of those years have 12 lunar months and seven have 13 months.

See also[edit]

Notes[edit]

  1. ^ "Rare Full Moon on Christmas Day". NASA. 17 December 2015. Archived from the original on 8 November 2023.
  • ^ Skilling, Tom (20 December 2015). "Ask Tom: How unusual is a full moon on Christmas Day?". Chicago Tribune. Archived from the original on 22 December 2015.
  • ^ needs citation
  • ^ "The Babylonian Calendar". Mathematical Institute. Utrecht University. July 2021. Archived from the original on 2 September 2023.
  • ^ Livy, Ab Urbe Condita, I, XIX, 6.
  • ^ Diodorus Siculus, Bibl. Hist. II.47.
  • ^ Freeth, Tony; Jones, Alexander; Steele, John M.; Bitsakis, Yanis (31 July 2008). "Calendars with Olympiad display and eclipse prediction on the Antikythera Mechanism" (PDF). Nature. 454 (7204): 614–7. Bibcode:2008Natur.454..614F. doi:10.1038/nature07130. PMID 18668103. S2CID 4400693. Retrieved 20 May 2014.
  • ^ Nothaft 2012, p. 168.
  • ^ McCarthy & Breen 2003, p. 17.
  • ^ Declercq 2000, pp. 65–66.
  • ^ Declercq 2000, p. 66.
  • ^ The month is 29.5 days and 793 "parts", where a part is 1/18 of a minute. Tøndering, Trine; Tøndering, Claus. "Calendar FAQ: the Hebrew calendar: New moon". This comes to 29+1375325920 days. Multiplying this by 235 gives the length of the cycle.
  • ^ "Jewish religious year | Cycle, Holidays, & Facts | Britannica". www.britannica.com. Retrieved 14 November 2021.
  • ^ Watkins 1954.
  • ^ Hannah 2005.
  • ^ Johnson 2001, p. 238.
  • ^ Richards (1998), pp. 94–96.
  • ^ glossary (2022), s.v. year, tropical.
  • ^ Richards (2013), p. 587.
  • References[edit]

    External links[edit]

  • icon Stars
  • Spaceflight
  • Outer space
  • Solar System

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Metonic_cycle&oldid=1232287647"

    Categories: 
    Ancient Greek astronomy
    Time in astronomy
    Periodic phenomena
    Calendars
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Use dmy dates from March 2022
    Articles containing Ancient Greek (to 1453)-language text
    Pages with Hebrew IPA
    All pages needing factual verification
    Wikipedia articles needing factual verification from November 2021
    Commons category link from Wikidata
     



    This page was last edited on 2 July 2024, at 23:42 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki