Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 References  














Misalignment mechanism






العربية
Português
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


It is a well known fact that a quarter of the energy density of the universe is in the form of dark matter (DM). One can corroborate the presence of DM by alluding to the observational data such as anisotropies in Cosmic Microwave Background (CMB) radiation and the formation of Large scale structure in the universe. There are various schools of thought with differing positions on the nature of DM, but they mostly converge on the fact that the mass of DM lies within the range of eV to . Such light-weight, spinless DM, with no or little self-interaction between themselves[1] is described by the classical scalar field. Axion is the example of field-like DM.

The interaction of axions with the other particles is assumed to be too weak for axions to reach thermal equilibrium with the rest of the early universe plasma, implying that they were produced non-thermally. The production mechanism of such particles is the vacuum misalignment mechanism which is a hypothesized effect in the Peccei–Quinn theory proposed solution to the strong-CP probleminquantum mechanics.[2] The effect occurs when a particle's field has an initial value that is not at or near a potential minimum. This causes the particle's field to oscillate around the nearest minimum, eventually dissipating energy by decaying into other particles until the minimum is attained.

In the case of hypothesized axions created in the early universe, the initial values are random because of the masslessness of axions in the high temperature plasma. Near the critical temperature of quantum chromodynamics, axions possess a temperature-dependent mass that enters a damped oscillation until the potential minimum is reached.

There are other production mechanism for cold DM [3] axions, but it is least model dependent provided that the Hubble parameter is much greater than the axion mass well before matter - radiation equality. The expansion of the universe acts as a friction term, freezing the axion amplitude at a constant value . The action in the minimally coupled scalar field theory is given by

where is the determinant of FLRW metric . The dynamics of these particles are a Klein-Gordon equation in a homogeneous and isotropic space-time, of which scale factor a(t) evolves as determined by the Hubble parameter . Near the minimum of its potential, where , of which then behaves cosmologically as a damped harmonic oscillator:

[4]

Due to the expansion of the universe, dropped below , the damping becomes undercritical and the field can roll down and start oscillating near the bottom of the potential. In this case, the solution of field equation can be deduced by WKB approximation.[5]

The energy density of these fields dilutes with the scale factor. It can be shown that the axion density provides a fraction a of the critical density given by, [6]

The φ oscillations, which can be interpreted as a set of particles, therefore have the red shifting behavior of (non-relativistic) matter, making this a suitable dark matter candidate.

References

[edit]
  1. ^ Lam, Hui; Ostriker, Jeremiah P.; Tremaine, Scott; Witten, Edward (February 28, 2017). "Ultralight scalars as cosmological dark matter". Phys. Rev. D. 95 (4): 043541. arXiv:1610.08297. Bibcode:2017PhRvD..95d3541H. doi:10.1103/PhysRevD.95.043541. S2CID 96457825.
  • ^ Markus Kuster; Georg Raffelt; Berta Beltrán (7 December 2007). Axions: Theory, Cosmology, and Experimental Searches. Springer Science & Business Media. pp. 85–. ISBN 978-3-540-73517-5.
  • ^ Marsh, David J.E. (July 2016). "Axion cosmology". Physics Reports. 643: 1–79. arXiv:1510.07633. Bibcode:2016PhR...643....1M. doi:10.1016/j.physrep.2016.06.005. S2CID 119264863.
  • ^ Steven, Weinberg (2008). Cosmology. Oxford University Press. p. 616. ISBN 978-0198526827.
  • ^ Paola, Arias; Davide, Cadamuro; Mark, Goodsell (2013). "WISPy Cold Dark Matter". JCAP. 06 (6): 013. arXiv:1201.5902. doi:10.1088/1475-7516/2012/06/013. S2CID 250807478.
  • ^ Lam, Hui (2021). "Wave Dark Matter". Annu. Rev. Astron. Astrophys. 59: 247–289. arXiv:2101.11735. Bibcode:2021ARA&A..59..247H. doi:10.1146/annurev-astro-120920-010024. S2CID 231719700.
  • 2. Asimina Arvanitaki etal; (1 January 2020). The Large-Misalignment Mechanism for the Formation of Compact Axion Structures: Signatures from the QCD Axion to Fuzzy Dark Matter; arXiv:1909.11665v2 [astro-ph.CO] 30 Dec 2019


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Misalignment_mechanism&oldid=1234269184"

    Categories: 
    Physics beyond the Standard Model
    Astroparticle physics
    Hidden categories: 
    Articles needing additional references from October 2015
    All articles needing additional references
    Articles lacking in-text citations from April 2021
    All articles lacking in-text citations
     



    This page was last edited on 13 July 2024, at 13:29 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki