Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Hallmarks  





2 See also  





3 References  





4 Notes  





5 External links  














Modern physics






العربية


Български
Bosanski
Català
Deutsch
Español
فارسی
Galego

Հայերեն
ि
Hrvatski
Bahasa Indonesia
Italiano
עברית
Magyar
Македонски

مصرى
مازِرونی

Naijá
Nederlands


Português
کوردی
Српски / srpski
Svenska
ி
Taclit
Türkçe
Vèneto
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikibooks
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Classical physics is usually concerned with everyday conditions: speeds are much lower than the speed of light, sizes are much greater than that of atoms, yet very small in astronomical terms. Modern physics, however, is concerned with high velocities, small distances, and very large energies.

Modern physics is a branch of physics that developed in the early 20th century and onward or branches greatly influenced by early 20th century physics. Notable branches of modern physics include quantum mechanics, special relativity and general relativity.

Classical physics is typically concerned with everyday conditions: speeds are much lower than the speed of light, sizes are much greater than that of atoms, and energies are relatively small. Modern physics, however, is concerned with more extreme conditions, such as high velocities that are comparable to the speed of light (special relativity), small distances comparable to the atomic radius (quantum mechanics), and very high energies (relativity). In general, quantum and relativistic effects are believed to exist across all scales, although these effects may be very small at human scale. While quantum mechanics is compatible with special relativity (See: Relativistic quantum mechanics), one of the unsolved problems in physics is the unification of quantum mechanics and general relativity, which the Standard Modelofparticle physics currently cannot account for.

Modern physics is an effort to understand the underlying processes of the interactions of matter using the tools of science & engineering. In a literal sense, the term modern physics means up-to-date physics. In this sense, a significant portion of so-called classical physics is modern.[1] However, since roughly 1890, new discoveries have caused significant paradigm shifts:[1] especially the advent of quantum mechanics (QM) and relativity (ER). Physics that incorporates elements of either QM or ER (or both) is said to be modern physics. It is in this latter sense that the term is generally used.[1]

Modern physics is often encountered when dealing with extreme conditions. Quantum mechanical effects tend to appear when dealing with "lows" (low temperatures, small distances), while relativistic effects tend to appear when dealing with "highs" (high velocities, large distances), the "middles" being classical behavior. For example, when analyzing the behavior of a gas at room temperature, most phenomena will involve the (classical) Maxwell–Boltzmann distribution. However, near absolute zero, the Maxwell–Boltzmann distribution fails to account for the observed behavior of the gas, and the (modern) Fermi–DiracorBose–Einstein distributions have to be used instead.

German physicists Albert Einstein (1879–1955), founder of the theory of relativity, and Max Planck (1858–1947), founder of quantum theory

Very often, it is possible to find – or "retrieve" – the classical behavior from the modern description by analyzing the modern description at low speeds and large distances (by taking a limit, or by making an approximation). When doing so, the result is called the classical limit.

Classical physics (Rayleigh–Jeans law, black line) failed to explain black-body radiation – the so-called ultraviolet catastrophe. The quantum description (Planck's law, colored lines) is said to be modern physics.

Hallmarks[edit]

These are generally considered to be the topics regarded as the "core" of the foundation of modern physics:

  • Black-body radiation
  • Oil drop experiment
  • Franck–Hertz experiment
  • Geiger–Marsden experiment (Rutherford's experiment)
  • Gravitational lensing
  • Michelson–Morley experiment
  • Photoelectric effect
  • Quantum thermodynamics
  • Radioactive phenomena in general
  • Perihelion precession of Mercury
  • Stern–Gerlach experiment
  • Wave–particle duality
  • Solid-state physics
  • See also[edit]

  • Classical physics
  • Quantum mechanics
  • Theory of relativity
  • Quantum field theory
  • Unified field theory
  • Nuclear Fission
  • References[edit]

    Notes[edit]

    1. ^ a b c F. K. Richtmyer; E. H. Kennard; T. Lauristen (1955). Introduction to Modern Physics (5th ed.). New York: McGraw-Hill. p. 1. LCCN 55006862.

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Modern_physics&oldid=1225300553"

    Categories: 
    Modern physics
    History of physics
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Use dmy dates from August 2021
    Pages using multiple image with auto scaled images
    Articles with GND identifiers
    Articles with NKC identifiers
     



    This page was last edited on 23 May 2024, at 15:45 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki