Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Description  





2 Rellich's theorem  





3 Ellipticity results  





4 Applications  





5 See also  





6 References  





7 Additional references  





8 External links  














MongeAmpère equation






Deutsch
Español
Français
Italiano
Русский

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, a (real) Monge–Ampère equation is a nonlinear second-order partial differential equation of special kind. A second-order equation for the unknown function u of two variables x,y is of Monge–Ampère type if it is linear in the determinant of the Hessian matrixofu and in the second-order partial derivativesofu. The independent variables (x,y) vary over a given domain DofR2. The term also applies to analogous equations with n independent variables. The most complete results so far have been obtained when the equation is elliptic.

Monge–Ampère equations frequently arise in differential geometry, for example, in the Weyl and Minkowski problems in differential geometry of surfaces. They were first studied by Gaspard Monge in 1784[1] and later by André-Marie Ampère in 1820.[2] Important results in the theory of Monge–Ampère equations have been obtained by Sergei Bernstein, Aleksei Pogorelov, Charles Fefferman, and Louis Nirenberg. More recently, Alessio Figalli and Luis Caffarelli were recognized for their work on the regularity of the Monge–Ampère equation, with the former winning the Fields Medal in 2018 and the latter the Abel Prize in 2023.[3][4]

Description[edit]

Given two independent variables x and y, and one dependent variable u, the general Monge–Ampère equation is of the form

where A, B, C, D, and E are functions depending on the first-order variables x, y, u, ux, and uy only.

Rellich's theorem[edit]

Let Ω be a bounded domain in R3, and suppose that on Ω A, B, C, D, and E are continuous functions of x and y only. Consider the Dirichlet problem to find u so that

If

then the Dirichlet problem has at most two solutions.[5]

Ellipticity results[edit]

Suppose now that x is a variable with values in a domain in Rn, and that f(x,u,Du) is a positive function. Then the Monge–Ampère equation

is a nonlinear elliptic partial differential equation (in the sense that its linearization is elliptic), provided one confines attention to convex solutions.

Accordingly, the operator L satisfies versions of the maximum principle, and in particular solutions to the Dirichlet problem are unique, provided they exist.[citation needed]

Applications[edit]

Monge–Ampère equations arise naturally in several problems in Riemannian geometry, conformal geometry, and CR geometry. One of the simplest of these applications is to the problem of prescribed Gauss curvature.[6] Suppose that a real-valued function K is specified on a domain ΩinRn, the problem of prescribed Gauss curvature seeks to identify a hypersurface of Rn+1 as a graph z = u(x) over x ∈ Ω so that at each point of the surface the Gauss curvature is given by K(x). The resulting partial differential equation is

The Monge–Ampère equations are related to the Monge–Kantorovich optimal mass transportation problem, when the "cost functional" therein is given by the Euclidean distance.[7]

See also[edit]

References[edit]

  1. ^ Monge, Gaspard (1784). "Mémoire sur le calcul intégral des équations aux différences partielles". Mémoires de l'Académie des Sciences. Paris, France: Imprimerie Royale. pp. 118–192.
  • ^ Ampère, André-Marie (1819). Mémoire contenant l'application de la théorie exposée dans le XVII. e Cahier du Journal de l'École polytechnique, à l'intégration des équations aux différentielles partielles du premier et du second ordre. Paris: De l'Imprimerie royale. Retrieved 2017-06-29.
  • ^ "Figalli long citation" (PDF). Fields Medals 2018. International Mathematical Union.
  • ^ De Ambrosio, Martín. "A nivel de los grandes del siglo: Luis Caffarelli, el Messi de la matemática que ganó el equivalente al Nobel de la disciplina". LA NACION. LA NACION. Retrieved 22 March 2023.
  • ^ Courant & Hilbert 1962, p. 324.
  • ^ Gilbarg & Trudinger 2001.
  • ^ Villani 2003; Villani 2009.
  • Additional references[edit]

  • Courant, R.; Hilbert, D. (1962). Methods of mathematical physics. Volume II: Partial differential equations. New York–London: Interscience Publishers. doi:10.1002/9783527617234. ISBN 9780471504399. MR 0140802. Zbl 0099.29504.
  • Gilbarg, David; Trudinger, Neil S. (2001). Elliptic partial differential equations of second order. Classics in Mathematics (Reprint of the 1998 ed.). Berlin: Springer-Verlag. doi:10.1007/978-3-642-61798-0. ISBN 3-540-41160-7. MR 1814364. Zbl 1042.35002.
  • Spivak, Michael (1999). A comprehensive introduction to differential geometry: volume five (Third edition of 1975 original ed.). Publish or Perish, Inc. ISBN 0-914098-74-8. MR 0532834. Zbl 1213.53001.
  • Villani, Cédric (2003). Topics in optimal transportation. Graduate Studies in Mathematics. Vol. 58. Providence, RI: American Mathematical Society. doi:10.1090/gsm/058. ISBN 0-8218-3312-X. MR 1964483. Zbl 1106.90001.
  • Villani, Cédric (2009). Optimal transport. Old and new. Grundlehren der mathematischen Wissenschaften. Vol. 338. Berlin: Springer-Verlag. doi:10.1007/978-3-540-71050-9. ISBN 978-3-540-71049-3. MR 2459454. Zbl 1156.53003.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Monge–Ampère_equation&oldid=1146451634"

    Category: 
    Partial differential equations
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from May 2014
     



    This page was last edited on 24 March 2023, at 23:49 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki