Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Identity and generalisation  





2 Similar identities  





3 Proof  



3.1  Geometric proof of Morrie's law  





3.2  Algebraic proof of the generalised identity  







4 References  





5 Further reading  





6 External links  














Morrie's law






Català
Deutsch
فارسی
Français
Қазақша
Magyar

Português
Română
Русский
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Morrie's law is a special trigonometric identity. Its name is due to the physicist Richard Feynman, who used to refer to the identity under that name. Feynman picked that name because he learned it during his childhood from a boy with the name Morrie Jacobs and afterwards remembered it for all of his life.[1]

Identity and generalisation

[edit]

It is a special case of the more general identity

with n = 3 and α = 20° and the fact that

since

Similar identities

[edit]

A similar identity for the sine function also holds:

Moreover, dividing the second identity by the first, the following identity is evident:

Proof

[edit]

Geometric proof of Morrie's law

[edit]
Regular nonagon with being the center of its circumcircle. Computing of the angles:

Consider a regular nonagon with side length and let be the midpoint of , the midpoint and the midpoint of . The inner angles of the nonagon equal and furthermore , and (see graphic). Applying the cosinus definition in the right angle triangles , and then yields the proof for Morrie's law:[2]

Algebraic proof of the generalised identity

[edit]

Recall the double angle formula for the sine function

Solve for

It follows that:

Multiplying all of these expressions together yields:

The intermediate numerators and denominators cancel leaving only the first denominator, a power of 2 and the final numerator. Note that there are n terms in both sides of the expression. Thus,

which is equivalent to the generalization of Morrie's law.

References

[edit]
  1. ^ W. A. Beyer, J. D. Louck, and D. Zeilberger, A Generalization of a Curiosity that Feynman Remembered All His Life, Math. Mag. 69, 43–44, 1996. (JSTOR)
  • ^ Samuel G. Moreno, Esther M. García-Caballero: "'A Geometric Proof of Morrie's Law". In: American Mathematical Monthly, vol. 122, no. 2 (February 2015), p. 168 (JSTOR)
  • Further reading

    [edit]
    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Morrie%27s_law&oldid=1133613129"

    Categories: 
    Mathematical identities
    Trigonometry
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles containing proofs
     



    This page was last edited on 14 January 2023, at 17:52 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki