Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Examples  





2 Coordinate representation  





3 Example  





4 Relation to tensor products  





5 Multilinear functions on n×n matrices  





6 Example  





7 Properties  





8 See also  





9 References  














Multilinear map






العربية
Deutsch
Esperanto
Français
Íslenska
Italiano
Nederlands

Polski
Português
Română
Русский
Suomi
Svenska
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inlinear algebra, a multilinear map is a function of several variables that is linear separately in each variable. More precisely, a multilinear map is a function

where () and are vector spaces (ormodules over a commutative ring), with the following property: for each , if all of the variables but are held constant, then is a linear functionof.[1] One way to visualize this is to imagine two orthogonal vectors; if one of these vectors is scaled by a factor of 2 while the other remains unchanged, the cross product likewise scales by a factor of two. If both are scaled by a factor of 2, the cross product scales by a factor of .

A multilinear map of one variable is a linear map, and of two variables is a bilinear map. More generally, for any nonnegative integer , a multilinear map of k variables is called a k-linear map. If the codomain of a multilinear map is the field of scalars, it is called a multilinear form. Multilinear maps and multilinear forms are fundamental objects of study in multilinear algebra.

If all variables belong to the same space, one can consider symmetric, antisymmetric and alternating k-linear maps. The latter two coincide if the underlying ring (orfield) has a characteristic different from two, else the former two coincide.

Examples[edit]

Coordinate representation[edit]

Let

be a multilinear map between finite-dimensional vector spaces, where has dimension , and has dimension . If we choose a basis for each and a basis for (using bold for vectors), then we can define a collection of scalars by

Then the scalars completely determine the multilinear function . In particular, if

for , then

Example[edit]

Let's take a trilinear function

where Vi = R2, di = 2, i = 1,2,3, and W = R, d = 1.

A basis for each Viis Let

where . In other words, the constant is a function value at one of the eight possible triples of basis vectors (since there are two choices for each of the three ), namely:

Each vector can be expressed as a linear combination of the basis vectors

The function value at an arbitrary collection of three vectors can be expressed as

or in expanded form as

Relation to tensor products[edit]

There is a natural one-to-one correspondence between multilinear maps

and linear maps

where denotes the tensor productof. The relation between the functions and is given by the formula

Multilinear functions on n×n matrices[edit]

One can consider multilinear functions, on an n×n matrix over a commutative ring K with identity, as a function of the rows (or equivalently the columns) of the matrix. Let A be such a matrix and ai, 1 ≤ in, be the rows of A. Then the multilinear function D can be written as

satisfying

If we let represent the jth row of the identity matrix, we can express each row ai as the sum

Using the multilinearity of D we rewrite D(A)as

Continuing this substitution for each ai we get, for 1 ≤ in,

Therefore, D(A) is uniquely determined by how D operates on .

Example[edit]

In the case of 2×2 matrices, we get

where and . If we restrict to be an alternating function, then and . Letting , we get the determinant function on 2×2 matrices:

Properties[edit]

See also[edit]

References[edit]

  1. ^ Lang, Serge (2005) [2002]. "XIII. Matrices and Linear Maps §S Determinants". Algebra. Graduate Texts in Mathematics. Vol. 211 (3rd ed.). Springer. pp. 511–. ISBN 978-0-387-95385-4.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Multilinear_map&oldid=1195896667"

Category: 
Multilinear algebra
Hidden categories: 
Articles with short description
Short description is different from Wikidata
Articles needing additional references from October 2023
All articles needing additional references
All articles with unsourced statements
Articles with unsourced statements from October 2023
 



This page was last edited on 15 January 2024, at 19:18 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki