Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Discovery  





2 Biosynthesis  



2.1  Prokaryotes and simple eukaryotes  



2.1.1  Ornithine acetyltransferase (OAT) synthesis  





2.1.2  N-Acetylglutamate synthase (NAGS) synthesis  







2.2  Vertebrates  







3 Biological roles  



3.1  Vertebrates and mammals  





3.2  Bacteria  





3.3  White clover seedling roots  







4 Structure  



4.1  Proton NMR spectroscopy  





4.2  13C NMR spectroscopy  







5 See also  





6 References  





7 External links  














N-Acetylglutamic acid






Asturianu
تۆرکجه
فارسی
Français

ि

Norsk bokmål
Српски / srpski
Srpskohrvatski / српскохрватски
Yorùbá

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


N-Acetylglutamic acid
Skeletal formula of N-acetylglutamic acid
Names
IUPAC name

2-Acetamidopentanedioic acid[1]

Other names

Acetylglutamic acid[citation needed]

Identifiers

CAS Number

  • 19146-55-5 R ☒N
  • 1188-37-0 S checkY
  • 3D model (JSmol)

    3DMet
    Abbreviations
  • NAcGlu[citation needed]
  • Ac-Glu-OH[citation needed]
  • Beilstein Reference

    1727473 S
    ChEBI
    ChemSpider
  • 1272049 R ☒N
  • 64077 S ☒N
  • DrugBank
    ECHA InfoCard 100.024.899 Edit this at Wikidata
    EC Number
    • 227-388-6
    KEGG
    MeSH N-acetylglutamate

    PubChem CID

  • 1560015 R
  • 70914 S
  • RTECS number
    • LZ9725000 S
    UNII

    CompTox Dashboard (EPA)

    • InChI=1S/C7H11NO5/c1-4(9)8-5(7(12)13)2-3-6(10)11/h5H,2-3H2,1H3,(H,8,9)(H,10,11)(H,12,13) checkY

      Key: RFMMMVDNIPUKGG-UHFFFAOYSA-N checkY

    • InChI=1S/C7H11NO5/c1-4(9)8-5(7(12)13)2-3-6(10)11/h5H,2-3H2,1H3,(H,8,9)(H,10,11)(H,12,13)/t5-/m1/s1

      Key: RFMMMVDNIPUKGG-RXMQYKEDSA-N

    • InChI=1S/C7H11NO5/c1-4(9)8-5(7(12)13)2-3-6(10)11/h5H,2-3H2,1H3,(H,8,9)(H,10,11)(H,12,13)/t5-/m0/s1

      Key: RFMMMVDNIPUKGG-YFKPBYRVSA-N

    • CC(=O)NC(CCC(=O)O)C(=O)O

    Properties

    Chemical formula

    C7H11NO5
    Molar mass 189.167 g·mol−1
    Appearance White crystals
    Density 1 g mL−1
    Melting point 191 to 194 °C (376 to 381 °F; 464 to 467 K)

    Solubility in water

    36 g L−1
    Hazards
    Lethal dose or concentration (LD, LC):

    LD50 (median dose)

    >7 g kg−1 (oral, rat)
    Related compounds

    Related alkanoic acids

  • Aceglutamide
  • Citrulline
  • Pivagabine
  • Related compounds

  • Carbromal
  • Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    ☒N verify (what is checkY☒N ?)

    Infobox references

    N-Acetylglutamic acid (also referred to as N-acetylglutamate, abbreviated NAG, chemical formula C7H11NO5)[2] is biosynthesized from glutamate and acetylornithine by ornithine acetyltransferase, and from glutamic acid and acetyl-CoA by the enzyme N-acetylglutamate synthase. The reverse reaction, hydrolysis of the acetyl group, is catalyzed by a specific hydrolase. It is the first intermediate involved in the biosynthesis of arginine in prokaryotes and simple eukaryotes and a regulator in the process known as the urea cycle that converts toxic ammonia to urea for excretion from the body in vertebrates.

    Discovery[edit]

    N-Acetylglutamic acid is an extracellular metabolite isolated from the prokaryote Rhizobium trifolii that was characterized using many structure determination techniques such as proton nuclear magnetic resonance (1H NMR) spectroscopy, Fourier-transform infrared spectroscopy, and gas chromatography-mass spectrometry.

    InRhizobium, extracellular build-up of N-acetylglutamic acid is due to metabolism involving nod factor genes on a symbiotic plasmid. When the nod factors are mutated, less N-acetylglutamic acid is produced.[3]

    Biosynthesis[edit]

    Prokaryotes and simple eukaryotes[edit]

    In prokaryotes and simple eukaryotes, N-acetylglutamic acid can be produced by N-acetylglutamate synthase (NAGS) or ornithine acetyltransferase (OAT).

    Ornithine acetyltransferase (OAT) synthesis[edit]

    OAT synthesizes N-acetylglutamic acid from glutamate and acetylornithine and is the method of choice for production in prokaryotes that have the ability to synthesize the compound ornithine.[4]

    N-Acetylglutamate synthase (NAGS) synthesis[edit]

    N-Acetylglutamate synthase is an enzyme that serves as a replenisher of N-acetylglutamic acid to supplement any N-acetylglutamic acid lost by the cell through mitosis or degradation. NAGS synthesizes N-acetylglutamic acid by catalyzing the addition of an acetyl group from acetyl-coenzyme Atoglutamate. In prokaryotes with non-cyclic ornithine production, NAGS is the sole method of N-acetylglutamic acid synthesis and is inhibited by arginine.[4] Acetylation of glutamate is thought to prevent glutamate from being used by proline biosynthesis.[5]

    Vertebrates[edit]

    In contrast to prokaryotes, NAGS in mammals is enhanced by arginine, along with protamines. It is inhibited by N-acetylglutamic acid and its analogues (other N-acetylated compounds).[4]

    The brain also contains N-acetylglutamic acid at trace amounts, however no expression of NAGS is found. This suggests that N-acetylglutamic acid is produced by another enzyme in the brain that is yet to be determined.[4]

    Biological roles[edit]

    Vertebrates and mammals[edit]

    In vertebrae and mammals, N-acetylglutamic acid is the allosteric activator molecule to mitochondrial carbamyl phosphate synthetase I (CPSI) which is the first enzyme in the urea cycle.[6] It triggers the production of the first urea cycle intermediate, carbamyl phosphate. CPSI is inactive when N-acetylglutamic acid is not present. In the liver and small intestines, N-acetylglutamic acid-dependent CPSI produces citrulline, the second intermediate in the urea cycle. Liver cell distribution of N-acetylglutamic acid is highest in the mitochondria at 56% of total N-acetylglutamic acid availability, 24% in the nucleus, and the remaining 20% in the cytosol. Aminoacylase I in liver and kidney cells degrades N-acetylglutamic acid to glutamate and acetate.[7] In contrast, N-acetylglutamic acid is not the allosteric cofactor to carbamyl phosphate synthetase found in the cytoplasm, which is involved in pyrimidine synthesis.[8]

    N-acetylglutamic acid concentrations increase when protein consumption increases due to the accumulation of ammonia that must be secreted through the urea cycle, which supports the role of N-acetylglutamic acid as the cofactor for CPSI. Furthermore, N-acetylglutamic acid can be found in many commonly consumed foods such as soy, corn, and coffee, with cocoa powder containing a notably high concentration.[9]

    Deficiency in N-acetylglutamic acid in humans is an autosomal recessive disorder that results in blockage of urea production which ultimately increases the concentration of ammonia in the blood (hyperammonemia). Deficiency can be caused by defects in the NAGS coding gene or by deficiencies in the precursors essential for synthesis.[4]

    Bacteria[edit]

    N-Acetylglutamic acid is the second intermediate in the arginine production pathway in Escherichia coli and is produced via NAGS.[5] In this pathway, N-acetylglutamic acid kinase (NAGK) catalyzes the phosphorylation of the gamma (third) carboxyl group of N-acetylglutamic acid using the phosphate produced by hydrolysisofadenosine triphosphate (ATP).[10]

    White clover seedling roots[edit]

    Rhizobium can form a symbiotic relationship with white clover seedling roots and form colonies. The extracellular N-acetylglutamic acid produced by these bacteria have three morphological effects on the white clover seedling roots: branching of root hairs, swelling of root tips, and increase in the number of cell divisions in undifferentiated cells found on the outer-most cell layer of the root. This suggests that N-acetylglutamic acid is involved in the stimulation of mitosis. The same effects were observed on the strawberry clover, but not in legumes. The effects of N-acetylglutamic acid on the clover species were more potent than the effects from glutamine, glutamate, arginine, or ammonia.[4]

    Structure[edit]

    N-Acetylglutamic acid at physiological pH (7.4)

    N-Acetylglutamic acid is composed of two carboxylic acid groups and an amide group protruding from the second carbon. The structure of N-acetylglutamic acid at physiological pH (7.4) has all carboxyl groups deprotonated.

    Proton NMR spectroscopy[edit]

    N-acetylglutamic acid with protons shown
    Proton NMR spectrum

    The molecular structure of N-acetylglutamic acid was determined using proton NMR spectroscopy.[3] Proton NMR reveals the presence and functional group location of protons based on chemical shifts recorded on the spectrum.[11]

    13C NMR spectroscopy[edit]

    13C NMR Spectrum

    Like proton NMR, carbon-13 (13C) NMR spectroscopy is a method used in molecular structure determination. 13C NMR reveals the types of carbons present in a molecule based on chemical shifts that correspond to certain functional groups. N-Acetylglutamic acid exhibits carbonyl carbons most distinctly due to the three carbonyl-containing substituents.[12]

    See also[edit]

    References[edit]

    1. ^ "N-Acetyl-DL-glutamic acid - Compound Summary". PubChem Compound. USA: National Center for Biotechnology Information. 25 March 2005. Identification. Retrieved 25 June 2012.
  • ^ Pubchem. "N-Acetyl L-glutamic acid". pubchem.ncbi.nlm.nih.gov. Retrieved 2018-06-03.
  • ^ a b Philip-Hollingsworth S, Hollingsworth RI, Dazzo FB (September 1991). "N-Acetylglutamic acid: an extracellular nod signal of Rhizobium trifolii ANU843 that induces root hair branching and nodule-like primordia in white clover roots". The Journal of Biological Chemistry. 266 (25): 16854–8. doi:10.1016/S0021-9258(18)55380-1. PMID 1885611.
  • ^ a b c d e f Caldovic L, Tuchman M (June 2003). "N-Acetylglutamate and its changing role through evolution". The Biochemical Journal. 372 (Pt 2): 279–90. doi:10.1042/BJ20030002. PMC 1223426. PMID 12633501.
  • ^ a b Caldara M, Dupont G, Leroy F, Goldbeter A, De Vuyst L, Cunin R (March 2008). "Arginine biosynthesis in Escherichia coli: experimental perturbation and mathematical modeling". The Journal of Biological Chemistry. 283 (10): 6347–58. doi:10.1074/jbc.M705884200. PMID 18165237.
  • ^ Auditore, Joseph V.; Wade, Littleton; Olson, Erik J. (November 1966). "Occurrence of N-acetyl-L-glutamic Acid in the Human Brain". Journal of Neurochemistry. 13 (11): 1149–1155. doi:10.1111/j.1471-4159.1966.tb04272.x. ISSN 0022-3042. PMID 5924663. S2CID 43263361.
  • ^ Harper MS, Amanda Shen Z, Barnett JF, Krsmanovic L, Myhre A, Delaney B (November 2009). "N-Acetyl-glutamic acid: evaluation of acute and 28-day repeated dose oral toxicity and genotoxicity". Food and Chemical Toxicology. 47 (11): 2723–9. doi:10.1016/j.fct.2009.07.036. PMID 19654033.
  • ^ Pelley JW (2007). "Chapter 14: Purine, Pyrimidine, and Single-Carbon Metabolism". Elsevier's Integrated Biochemistry. Elsevier. pp. 117–122. doi:10.1016/b978-0-323-03410-4.50020-1. ISBN 978-0-323-03410-4.
  • ^ Hession AO, Esrey EG, Croes RA, Maxwell CA (October 2008). "N-Acetylglutamate and N-acetylaspartate in soybeans (Glycine max L.), maize (Zea mays L.), [corrected] and other foodstuffs". Journal of Agricultural and Food Chemistry. 56 (19): 9121–6. doi:10.1021/jf801523c. PMID 18781757.
  • ^ Gil Ortiz F, Ramón Maiques S, Fita I, Rubio V (August 2003). "The course of phosphorus in the reaction of N-acetyl-L-glutamate kinase, determined from the structures of crystalline complexes, including a complex with an AlF
    4
    transition state mimic". Journal of Molecular Biology. 331 (1): 231–44. doi:10.1016/S0022-2836(03)00716-2. PMID 12875848.
  • ^ "Predict 1H proton NMR spectra". www.nmrdb.org. Retrieved 2018-06-03.
  • ^ "Predict 13C carbon NMR spectra". www.nmrdb.org. Retrieved 2018-06-03.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=N-Acetylglutamic_acid&oldid=1104952966"

    Categories: 
    Acetamides
    Dicarboxylic acids
    Amino acid derivatives
    Hidden categories: 
    All articles with unsourced statements
    Articles with unsourced statements from June 2012
    Chemical articles with multiple compound IDs
    Multiple chemicals in an infobox that need indexing
    Chemical articles with multiple CAS registry numbers
    Chemical articles with multiple PubChem CIDs
    Articles with changed CASNo identifier
    Articles with changed EBI identifier
    Articles with changed ChemSpider identifier
    Articles with changed DrugBank identifier
    ECHA InfoCard ID from Wikidata
    Articles with changed KEGG identifier
    Articles containing unverified chemical infoboxes
    Chembox image size set
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 17 August 2022, at 18:44 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki